Unknown

Dataset Information

0

Copper Chelation as Targeted Therapy in a Mouse Model of Oncogenic BRAF-Driven Papillary Thyroid Cancer.


ABSTRACT: Purpose: Sixty percent of papillary thyroid cancers (PTC) have an oncogenic (V600E) BRAF mutation. Inhibitors of BRAF and its substrates MEK1/2 are showing clinical promise in BRAFV600E PTC. PTC progression can be decades long, which is challenging in terms of toxicity and cost. We previously found that MEK1/2 require copper (Cu) for kinase activity and can be inhibited with the well-tolerated and economical Cu chelator tetrathiomolybdate (TM). We therefore tested TM for antineoplastic activity in BRAFV600E -positive PTC.Experimental Design: The efficacy of TM alone and in combination with current standard-of-care lenvatinib and sorafenib or BRAF and MEK1/2 inhibitors vemurafenib and trametinib was examined in BRAFV600E-positive human PTC cell lines and a genetically engineered mouse PTC model.Results: TM inhibited MEK1/2 kinase activity and transformed growth of PTC cells. TM was as or more potent than lenvatinib and sorafenib and enhanced the antineoplastic activity of sorafenib and vemurafenib. Activated ERK2, a substrate of MEK1/2, overcame this effect, consistent with TM deriving its antineoplastic activity by inhibiting MEK1/2. Oral TM reduced tumor burden and vemurafenib in a BrafV600E -positive mouse model of PTC. This effect was ascribed to a reduction of Cu in the tumors. TM reduced P-Erk1/2 in mouse PTC tumors, whereas genetic reduction of Cu in developing tumors trended towards a survival advantage. Finally, TM as a maintenance therapy after cessation of vemurafenib reduced tumor volume in the aforementioned PTC mouse model.Conclusions: TM inhibits BRAFV600E -driven PTC through inhibition of MEK1/2, supporting clinical evaluation of chronic TM therapy for this disease. Clin Cancer Res; 24(17); 4271-81. ©2018 AACR.

SUBMITTER: Xu M 

PROVIDER: S-EPMC6125179 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Copper Chelation as Targeted Therapy in a Mouse Model of Oncogenic BRAF-Driven Papillary Thyroid Cancer.

Xu MengMeng M   Casio Michael M   Range Danielle E DE   Sosa Julie A JA   Counter Christopher M CM  

Clinical cancer research : an official journal of the American Association for Cancer Research 20180731 17


<b>Purpose:</b> Sixty percent of papillary thyroid cancers (PTC) have an oncogenic (V600E) BRAF mutation. Inhibitors of BRAF and its substrates MEK1/2 are showing clinical promise in <i>BRAF<sup>V600E</sup></i> PTC. PTC progression can be decades long, which is challenging in terms of toxicity and cost. We previously found that MEK1/2 require copper (Cu) for kinase activity and can be inhibited with the well-tolerated and economical Cu chelator tetrathiomolybdate (TM). We therefore tested TM for  ...[more]

Similar Datasets

| S-EPMC3020965 | biostudies-literature
| S-EPMC4862417 | biostudies-literature
| S-EPMC7127963 | biostudies-literature
| S-EPMC4000830 | biostudies-literature
| S-EPMC8498581 | biostudies-literature
| S-EPMC9976495 | biostudies-literature
| S-EPMC10391731 | biostudies-literature
| S-EPMC7037088 | biostudies-literature
| S-EPMC4138975 | biostudies-literature
| S-EPMC5994666 | biostudies-literature