Mitigation of hysteresis due to a pseudo-photochromic effect in thermochromic smart window coatings.
Ontology highlight
ABSTRACT: The aim of thermochromic window coatings is to reduce the energy consumption in the built environment by passively switching between a high solar transmitting state at low temperatures and low solar transmitting state at high temperatures. Previous studies have highlighted the negative impact of phase transition hysteresis on the performance of reflection based thermochromic films. However in the literature, the best reported results have depended on vanadium dioxide nanoparticle composites and anti-reflective structures that modulate light via changes in absorption rather than reflection. In light of these factors, this work aims to demonstrate theoretically, how the effects of phase transition hysteresis and gradient differ between absorbing and non-absorbing thermochromic films. To quantify and compare the performance of films with different transition characteristics, we define a metric based on the varying net energy flux through the window over the course of a year, including thermal energy re-radiated into the building from the film. Specifically, and importantly for the field, we demonstrate that a pseudo-photochromic effect in absorbing thermochromic films mitigates the detrimental effects of phase transition hysteresis and gradient that have been reported for reflection based thermochromic films. We find that for moderate hysteresis widths of 15?°C, the performance of the non-absorbing case drops to ~60% of its initial value whilst the performance of the absorbing film only drops to ~95%. As a result we find that the absorbing case outperforms the non-absorbing case when hysteresis widths are greater than 8?°C.
SUBMITTER: Sol C
PROVIDER: S-EPMC6125580 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA