Three-dimensional kinematics and the origin of the hominin walking stride.
Ontology highlight
ABSTRACT: Humans are unique among apes and other primates in the musculoskeletal design of their lower back and pelvis. While the last common ancestor of the Pan-Homo lineages has long been thought to be 'African ape-like', including in its lower back and ilia design, recent descriptions of early hominin and Miocene ape fossils have led to the proposal that its lower back and ilia were more similar to those of some Old World monkeys, such as macaques. Here, we compared three-dimensional kinematics of the pelvis and hind/lower limbs of bipedal macaques, chimpanzees and humans walking at similar dimensionless speeds to test the effects of lower back and ilia design on gait. Our results indicate that locomotor kinematics of bipedal macaques and chimpanzees are remarkably similar, with both species exhibiting greater pelvis motion and more flexed, abducted hind limbs than humans during walking. Some differences between macaques and chimpanzees in pelvis tilt and hip abduction were noted, but they were small in magnitude; larger differences were observed in ankle flexion. Our results suggest that if Pan and Homo diverged from a common ancestor whose lower back and ilia were either 'African ape-like' or more 'Old World monkey-like', at its origin, the hominin walking stride likely involved distinct (i.e. non-human-like) pelvis motion on flexed, abducted hind limbs.
SUBMITTER: O'Neill MC
PROVIDER: S-EPMC6127158 | biostudies-literature | 2018 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA