Ontology highlight
ABSTRACT: Background
The consumption of omega 3 polyunsaturated fatty acids (PUFAs) is important for human health and is closely associated with cell proliferation and differentiation. This study aimed to investigate the influence of omega 3 PUFAs on embryonic stem cell (ESC) proliferation and explore potential mechanisms that mediate these effects.Methods
In this study, we isolated ESCs from fad3b-expressing transgenic mice. We detected the fatty-acid composition of ESCs using gas chromatography-mass spectroscopy, analyzed cell-cycle phases using flow cytometry, and detected gene expression using real-time polymerase chain reaction (PCR) and western blots.Results
The amount of omega 3 PUFAs significantly increased in fad3b versus control ESCs. However, the growth of fad3b ESCs was slower than that of control cells, and most fad3b ESCs were in a prolonged G0/G1 phase after being passaged for 18 h. Therefore, we hypothesized that fad3b expression inhibited the cell cycle in ESCs by increasing the expression of P21, which then decreased the expression of cyclin-dependent kinase 4 (Cdk4). We found that pretreatment of fad3b ESCs with PD0325901, a P21 inhibitor, clearly attenuated the inhibitory effects of P21 on Cdk4, and resumed the cell cycle.Conclusions
Expression of the fad3b gene in ESCs increased the omega 3 PUFA content, which inhibited cell proliferation by prolonging the G1 phase but did not arrest the G0-to-G1 or G1-to-S transitions. The prolonged G1 phase in fad3b ESCs was probably induced by downregulation of Cdk4 expression via p21 upregulation. These results suggest that accumulation of omega 3 PUFAs in vivo may beneficially affect ESC differentiation and that fad3b ESCs may be a useful tool for investigating related mechanisms.
SUBMITTER: Wei Z
PROVIDER: S-EPMC6129006 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
Lipids in health and disease 20180908 1
<h4>Background</h4>The consumption of omega 3 polyunsaturated fatty acids (PUFAs) is important for human health and is closely associated with cell proliferation and differentiation. This study aimed to investigate the influence of omega 3 PUFAs on embryonic stem cell (ESC) proliferation and explore potential mechanisms that mediate these effects.<h4>Methods</h4>In this study, we isolated ESCs from fad3b-expressing transgenic mice. We detected the fatty-acid composition of ESCs using gas chromat ...[more]