Unknown

Dataset Information

0

Involvement of Calcium and Calmodulin in Nitric Oxide-Regulated Senescence of Cut Lily Flowers.


ABSTRACT: Both nitric oxide (NO) and calcium ion (Ca2+)/calmodulin (CaM) have been shown to regulate the senescence of cut flowers. However, not much is known about the crosstalk between NO and Ca2+/CaM during the senescence of cut flowers. In this study, cut Oriental × Trumpet hybrid lily "Manissa" were used to investigate the roles and relationship between NO and Ca2+/CaM during postharvest freshness. The results show that the effects of CaCl2 or NO donor SNAP on the vase life, maximum flower diameter and hours until full opening were dose-dependent, with an optimum concentration of 20 mM CaCl2 or 100 μM SNAP. However, Ca2+ chelators EGTA or BAPTA/AM, Ca2+ channel inhibitors LaCl3 or nifedipine and CaM antagonists W-7 or TFP inhibited the promotion of SNAP. SNAP applied alone significantly increased the endogenous Ca2+/CaM contents in cut lily flowers, while EGTA, BAPTA/AM, LaCl3, nifedipine, W-7, and TFP decreased the advancement of SNAP. In addition, the SNAP-induced Ca2+-ATPase activity was more than twice as much as the control, but EGTA, BAPTA/AM, LaCl3, nifedipine, W-7, and TFP also reversed the enhancement. Moreover, EGTA, BAPTA/AM, LaCl3, nifedipine, W-7, and TFP prevented the SNAP-induced upregulation of gene expression of CaM, CBL1, and CBL3, which is associated with calcium signaling pathway. Overall, these results suggest that Ca2+/CaM may function as downstream molecules in NO-regulated senescence of cut flowers.

SUBMITTER: Zhang J 

PROVIDER: S-EPMC6129963 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3387242 | biostudies-literature
| S-EPMC8652255 | biostudies-literature
| S-EPMC2198825 | biostudies-literature
| S-EPMC7039552 | biostudies-literature
| S-EPMC9303947 | biostudies-literature
| S-EPMC6320913 | biostudies-literature
| S-EPMC3427994 | biostudies-literature
| S-EPMC5623940 | biostudies-literature
| S-EPMC10515221 | biostudies-literature
| S-EPMC3569036 | biostudies-literature