Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study.
Ontology highlight
ABSTRACT: Working memory (WM), the ability to hold information on-line to guide planned behavior, improves through adolescence in parallel with continued maturation of critical brain systems supporting cognitive control. Initial developmental neuroimaging studies with one or two timepoints have provided important though varied results limiting our understanding of which and how neural systems change during this transition into mature WM. In this study, we leverage functional magnetic resonance imaging (fMRI) longitudinal data spanning up to 9 years in 129 normally developing individuals to identify which systems demonstrate growth changes that accompany improvements in WM performance. We used a memory guided saccade task that allowed us to probe encoding, pure maintenance, and retrieval neural processes of WM. Consistent with prior research, we found that WM performance continued to improve into the early 20's. fMRI region of interest (ROI) analyses revealed developmental (1) increases in sensorimotor-related (encoding/retrieval) activity in visual cortex from childhood through early adulthood that were associated with WM accuracy and (2) decreases in sustained (maintenance) activity in executive regions from childhood through mid-adolescence that were associated with response latency in childhood and early adolescence. Together these results provide compelling evidence that underlying the maturation of WM is a transition from reliance on executive systems to specialized regions related to the domain of mnemonic requirements of the task leading to optimal performance.
SUBMITTER: Simmonds DJ
PROVIDER: S-EPMC6130258 | biostudies-literature | 2017 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA