The chemo-prophylactic efficacy of an ethanol Moringa oleifera leaf extract against hepatocellular carcinoma in rats.
Ontology highlight
ABSTRACT: Hepatocellular carcinoma (HCC) is among the most well-known threatening tumours around the world, and the outlook remains bleak. Moringa oleifera Lam. (Moringaceae) exhibits antitumor, antioxidant and hepatoprotective properties.To assess the chemo-prophylactic proficiency and other likely activities of Moringa oleifera leaf ethanol extract (MOLEE) against diethyl nitrosamine (DEN)-induced HCC.Wistar rats were gastrogavaged with MOLEE (500?mg/kg) for one week and then gastrogavaged with MOLEE and DEN (10?mg/kg) for the following 16?weeks. The progressions of the histological components, serum biomarkers and oxidation of DNA of the liver tissues were resolved to assess the prophylactic impacts. The lipid oxidative biomarker, the cancer prevention agent status and apoptotic proteins were surveyed to assess the potential mechanisms.The MOLEE LD50 was estimated to be 5585?mg/kg. MOLEE (500?mg/kg) administration fundamentally repressed the expansion event of knobs and the normal knob number per knob-bearing livers prompted by DEN, enhanced hepatocellular appearance and altogether significantly decreased (p?DISCUSSION AND CONCLUSIONSThe outcomes presume that MOLEE inspired critical defensive impacts against DEN-induced hepatocarcinogenesis that might be identified with the implementation of antioxidant activity and actuation of apoptosis.
<h4>Context</h4>Hepatocellular carcinoma (HCC) is among the most well-known threatening tumours around the world, and the outlook remains bleak. Moringa oleifera Lam. (Moringaceae) exhibits antitumor, antioxidant and hepatoprotective properties.<h4>Objectives</h4>To assess the chemo-prophylactic proficiency and other likely activities of Moringa oleifera leaf ethanol extract (MOLEE) against diethyl nitrosamine (DEN)-induced HCC.<h4>Materials and methods</h4>Wistar rats were gastrogavaged with MO ...[more]
Project description:Mesenchymal stem cells (MSCs) have seen an elevated use in clinical works like regenerative medicine. Its potential therapeutic properties increases when used in tandem with complementary agents like bio-based materials. Therefore, the present study is the first to investigate the cytotoxicity of a highly valued medicinal plant, Moringa oleifera, on human Wharton's Jelly mesenchymal stem cells (hWJMSCs) and its effects on the cells' gene expression when used as a pre-treatment agent in vitro. M. oleifera leaves (MOL) were dried and subjected to UHPLC-QTOF/MS analysis, revealing several major compounds like apigenin, kaempferol, and quercetin in the MOL, with various biological activities like antioxidant and anti-cancer properties. We then treated the hWJMSCs with MOL and noticed a dose-dependant inhibition on the cells' proliferation. RNA-sequencing was performed to explain the possible mechanism of action and revealed genes like PPP1R1C, SULT2B1, CDKN1A, mir-154 and CCNB1, whose expression patterns were closely associated with the negative cell cycle regulation and cell cycle arrest process. This is also evident from gene set enrichment analysis where the GO and KEGG terms for down-regulated pathways were closely related to the cell cycle regulation. The Ingenuity pathway analysis (IPA) software further predicted the significant activation of (p < 0.05, z-score > 2) of the G2/M DNA damage checkpoint regulation pathway. The present study suggests that MOL exhibits an antiproliferative effect on hWJMSCs via cell cycle arrest and apoptotic pathways. We believe that this study provides an important baseline reference for future works involving MOL's potential to accompany MSCs for clinical works. Future works can take advantage of the cell's strong anti-cancer gene expression found in this study, and evaluate our MOL treatment on various cancer cell lines.
Project description:BackgroundThe incidence of lung cancer is expected to increase due to increases in exposure to airborne pollutants and cigarette smoke. Moringa oleifera (MO), a medicinal plant found mainly in Asia and South Africa is used in the traditional treatment of various ailments including cancer. This study investigated the antiproliferative effect of MO leaf extract (MOE) in cancerous A549 lung cells.MethodsA crude aqueous leaf extract was prepared and the cells were treated with 166.7 μg/ml MOE (IC50) for 24 h and assayed for oxidative stress (TBARS and Glutathione assays), DNA fragmentation (comet assay) and caspase (3/7 and 9) activity. In addition, the expression of Nrf2, p53, Smac/DIABLO and PARP-1 was determined by Western blotting. The mRNA expression of Nrf2 and p53 was assessed using qPCR.ResultsA significant increase in reactive oxygen species with a concomitant decrease in intracellular glutathione levels (p < 0.001) in MOE treated A549 cells was observed. MOE showed a significant reduction in Nrf2 protein expression (1.89-fold, p < 0.05) and mRNA expression (1.44-fold). A higher level of DNA fragmentation (p < 0.0001) was seen in the MOE treated cells. MOE's pro-apoptotic action was confirmed by the significant increase in p53 protein expression (1.02-fold, p < 0.05), p53 mRNA expression (1.59-fold), caspase-9 (1.28-fold, p < 0.05), caspase-3/7 (1.52-fold) activities and an enhanced expression of Smac/DIABLO. MOE also caused the cleavage and activation of PARP-1 into 89 KDa and 24 KDa fragments (p < 0.0001).ConclusionMOE exerts antiproliferative effects in A549 lung cells by increasing oxidative stress, DNA fragmentation and inducing apoptosis.
Project description:In our study, we aimed to evaluate the effects of Moringa oleifera leaves extract on rat paraoxonase 1 (rPON1) and catalase (rCAT) activities in alloxan-induced diabetic rats. Our study included three groups; group C (control, n = 5); group D (diabetic, n = 5); and group DM (M. oleifera extract-supplemented diabetic rats, n = 5). Daily oral administration of M. oleifera extract at 200 mg/kg doses produced an increase in endogenous antioxidants. Serum rPON1 (lactonase) and liver cytosol catalase activities were determined by a spectrophotometric assay using progress curve analysis. We found a decrease in the Vm value of rPON1 in diabetic rats, but dihydrocoumarin (DHC) affinity (Km) was slightly increased. The value of Vm for the DM group was found to be reduced approximately by a factor of 3 compared with those obtained for group C, whereas Km was largely changed (96 times). Catalase activity was significantly higher in the DM group. These data suggest that the activation of rPON1 and rCAT activities by M. oleifera extracts may be mediated via the effect of the specific flavonoids on the enzyme structure. In addition, through molecular blind docking analysis, rPON1 was found to have two binding sites for flavonoids. In contrast, flavonoids bound at four sites in rCAT. In conclusion, the data suggest that compounds from M. oleifera leaves extract were able to influence the catalytic activities of both enzymes to compensate for the changes provoked by diabetes in rats.
Project description:Moringa oleifera is a medicinal plant that has anti-inflammatory, antihypertensive, antidiabetic, tissue-protective, and antioxidant activities. Here, we evaluated the protective effect of M. oleifera leaf powder (MoLP) and 70% ethanol M. oleifera leaf extract (MoLE) on mitigating polycystic ovary syndrome (PCOS)-induced liver and kidney dysfunction via regulating oxidative stress in female albino mice (Mus musculus). The efficacy of M. oleifera was compared with metformin (standard medicine used to treat infertility in women). PCOS was induced by intramuscular injection of testosterone enanthate at 1.0 mg/100 g BW for 35 days. PCOS-induced mice were treated with MoLP (250 and 500 mg/Kg), MoLE (250 and 500 mg/kg), and metformin (250 mg/kg) orally for 14 days. Renal function test (RFT), liver function test (LFT), and oxidative stress biomarker malondialdehyde (MDA) were quantified in serum at 0, 7, and 14 days of intervention. Mice treated with M. oleifera and metformin showed a significant decrease (p < .001) in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphate (ALP), total bilirubin, urea, creatinine, and a significant increase (p < .001) in total protein, albumin, globulin, and albumin/globulin (A/G) ratio. Oxidative stress decreased significantly (p = .00) with respect to treatments, exposure days, and their interaction in metformin and all M. oleifera-treated groups. M. oleifera leaf powder and extract reduce oxidative stress and enhance nephron-hepatic activity in PCOS-induced female albino mice.
Project description:BackgroundArtificial insemination (AI) is an effective reproductive technique to improve the performance of cashmere goats and prevent the spread of diseases, and the quality of the semen determines the success of AI. The potential of Moringa oleifera leaf powder (MOLP) and Moringa oleifera leaf ethanolic extract (MOLE) to improve semen quality has been reported, but the underlying mechanisms remain unclear. For the purpose, 18 mature male cashmere goats were randomly assigned into three groups: the control (CON), MOLP, and MOLE groups. The CON group received distilled water orally; the MOLP group was orally treated with 200 mg/kg body weight (BW) MOLP; and the MOLE group was orally treated with 40 mg/kg BW MOLE.ResultsResults showed that MOLE contained long-chain fatty acids and flavonoids. Treatment with MOLP and MOLE increased the activities of the serum catalase, superoxide dismutase, and glutathione peroxidase (P < 0.05), enhanced the total antioxidant capacity (P < 0.05), and reduced the serum malondialdehyde level (P < 0.05). At the same time, MOLE increased the contents of serum gonadotropin releasing hormone and testosterone (P < 0.05). Moreover, MOLE significantly increased sperm concentration, motility, and viability (P < 0.05). Meanwhile, MOLE raised the Chao1 index (P < 0.05) and altered the composition of the rumen microbiota; it also raised the relative abundance of Treponema (P < 0.05) and Fibrobacter (P < 0.05) and reduced the relative abundance of Prevotella (P < 0.1). Correlation analysis revealed the genus Prevotella was significantly negatively correlated with sperm concentration, as well as sperm motility and viability. Furthermore, MOLE significantly increased the rumen levels of the steroid hormones testosterone and dehydroepiandrosterone (P < 0.05), as well as the polyunsaturated fatty acids (PUFAs) alpha-Linolenic acid, gamma-Linolenic acid, docosapentaenoic acid, and 9-S-Hydroperoxylinoleicacid (P < 0.05).ConclusionsOral MOLE supplementation can improve semen quality by increasing the antioxidant capacity and altering the rumen microbiota and metabolites of cashmere goats. Moreover, the MOLP supplementation could enhance the antioxidant capacity of cashmere goats.
Project description:Moringa oleifera Lam. is a tropical plant, used for centuries as food and traditional medicine. The aim of this study was to develop, validate and biochemically characterize an isothiocyanate-enriched moringa seed extract (MSE), and to compare the anti-inflammatory effects of MSE-containing moringa isothiocyanate-1 (MIC-1) with a curcuminoid-enriched turmeric extract (CTE), and a material further enriched in its primary phytochemical, curcumin (curcumin-enriched material; CEM). MSE was prepared by incubating ground moringa seeds with water to allow myrosinase-catalyzed enzymatic formation of bioactive MIC-1, the predominant isothiocyanate in moringa seeds. Optimization of the extraction process yielded an extract of 38.9% MIC-1. Phytochemical analysis of MSE revealed the presence of acetylated isothiocyanates, phenolic glycosides unique to moringa, flavonoids, fats and fatty acids, proteins and carbohydrates. MSE showed a reduction in the carrageenan-induced rat paw edema (33% at 500 mg/kg MIC-1) comparable to aspirin (27% at 300 mg/kg), whereas CTE did not have any significant effect. In vitro, MIC-1 at 1 μM significantly reduced the production of nitric oxide (NO) and at 5 μM, the gene expression of LPS-inducible nitric oxide synthase (iNOS) and interleukins 1β and 6 (IL-1β and IL-6), whereas CEM did not show any significant activity at all concentrations tested. MIC-1 (10μM) was also more effective at upregulating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase pi 1 (GSTP1), and heme oxygenase 1 (HO1) than the CEM. Thus, in contrast to CTE and CEM, MSE and its major isothiocyanate MIC-1 displayed strong anti-inflammatory and antioxidant properties in vivo and in vitro, making them promising botanical leads for the mitigation of inflammatory-mediated chronic disorders.
Project description:Moringa oleifera Lam. (family; Moringaceae), commonly known as drumstick, have been used for centuries as a part of the Ayurvedic system for several diseases without having any scientific data. Demineralized water was used to prepare aqueous extract by maceration for 24 h and complete metabolic profiling was performed using GC-MS and HPLC. Hypoglycemic properties of extract have been tested on carbohydrate digesting enzyme activity, yeast cell uptake, muscle glucose uptake, and intestinal glucose absorption. Type 2 diabetes was induced by feeding high-fat diet (HFD) for 8 weeks and a single injection of streptozotocin (STZ, 45 mg/kg body weight, intraperitoneally) was used for the induction of type 1 diabetes. Aqueous extract of M. oleifera leaf was given orally at a dose of 100 mg/kg to STZ-induced rats and 200 mg/kg in HFD mice for 3 weeks after diabetes induction. Aqueous extract remarkably inhibited the activity of α-amylase and α-glucosidase and it displayed improved antioxidant capacity, glucose tolerance and rate of glucose uptake in yeast cell. In STZ-induced diabetic rats, it produces a maximum fall up to 47.86% in acute effect whereas, in chronic effect, it was 44.5% as compared to control. The fasting blood glucose, lipid profile, liver marker enzyme level were significantly (p < 0.05) restored in both HFD and STZ experimental model. Multivariate principal component analysis on polar and lipophilic metabolites revealed clear distinctions in the metabolite pattern in extract and in blood after its oral administration. Thus, the aqueous extract can be used as phytopharmaceuticals for the management of diabetes by using as adjuvants or alone.
Project description:Moringa oleifera has been regarded as a food substance since ancient times and has also been used as a treatment for many diseases. Recently, various therapeutic effects of M. oleifera such as antimicrobial, anticancer, anti-inflammatory, antidiabetic, and antioxidant effects have been investigated; however, most of these studies described only simple biological phenomena and their chemical compositions. Due to the increasing attention on natural products, such as those from plants, and the advantages of oral administration of anticancer drugs, soluble extracts from M. oleifera leaves (MOL) have been prepared and their potential as new anticancer drug candidates has been assessed in this study. Here, the soluble cold Distilled Water extract (4°C; concentration, 300 µg/mL) from MOL greatly induced apoptosis, inhibited tumor cell growth, and lowered the level of internal reactive oxygen species (ROS) in human lung cancer cells as well as other several types of cancer cells, suggesting that the treatment of cancer cells with MOL significantly reduced cancer cell proliferation and invasion. Moreover, over 90% of the genes tested were unexpectedly downregulated more than 2-fold, while just below 1% of the genes were upregulated more than 2-fold in MOL extract-treated cells, when compared with nontreated cells. Since severe dose-dependent rRNA degradation was observed, the abnormal downregulation of numerous genes was considered to be attributable to abnormal RNA formation caused by treatment with MOL extracts. Additionally, the MOL extract showed greater cytotoxicity for tumor cells than for normal cells, strongly suggesting that it could potentially be an ideal anticancer therapeutic candidate specific to cancer cells. These results suggest the potential therapeutic implications of the soluble extract from MOL in the treatment of various types of cancers.
Project description:Hydrogel-based wound dressings are often chosen for healing diabetic foot ulcers (DFU) in combination with herbal extracts. Moringa oleifera leaf (MOL) extract is a potent herb containing antimicrobial and anti-inflammatory bioactive substances. In this work, wound dressings based on polyvinyl alcohol (PVA), MOL extract, and graphene oxide (GO) were developed for DFU wound dressing. The PVA/MOL/GO hydrogel was synthesized using four cycles of a freeze-thaw process with varying concentrations of MOL extract. All hydrogels showed a water content of 83-88% and an equilibrium swelling ratio between 155-171%. After degradation in phosphate-buffered saline, the hydrogels showed a more open porous structure. We observed a degradation rate of 26-28%. Although the increase in MOL extract reduced the tensile strength of the hydrogel, the addition of GO increased the tensile strength. The PVA/MOL/GO hydrogel showed the highest antibacterial activity, with a reduction of 94% Gram-positive S. aureus and 82% Gram-negative E. coli. Finally, all samples possessed appropriate cytocompatibility with cell viability reaching 83-135% in 3T3L1 mouse fibroblast cells. This result was verified by in vitro wound-healing analysis performed by scratch assay. This study presents the potency of combined PVA, MOL, and GO as a biocompatible DFU wound dressing.
Project description:Moringa oleifera (M. oleifera) is a plant widely used for its beneficial properties both in medical and non-medical fields. Because they produce bioactive metabolites, plants are a major resource for drug discovery. In this study, two different cultivars of leaves of M. oleifera (Salento and Barletta) were obtained by maceration or microwave-assisted extraction (MAE). We demonstrated that extracts obtained by MAE exhibited a lower cytotoxic profile compared to those obtained by maceration at concentrations ranged from 25 to 400 µg/mL, on both Vero CCL-81 and Vero/SLAM cells. We examined their antiviral properties against two viruses, i.e., the human coronavirus 229E (HCoV-229E) and measles virus (MeV), which are both responsible for respiratory infections. The extracts were able to inhibit the infection of both viruses and strongly prevented their attack and entry into the cells in a range of concentrations from 50 to 12 µg/mL. Particularly active was the variety of Salento that registered a 50% inhibitory concentration (IC50) at 21 µg/mL for HCoV-229E and at 6 µg/mL for MeV. We identified the presence of several compounds through high performance liquid chromatography (HPLC); in particular, chlorogenic and neochlorogenic acids, quercetin 3-O-β-d-glucopyranoside (QGP), and glucomoringin (GM) were mainly observed. In the end, M. oleifera can be considered a promising candidate for combating viral infections with a very strong action in the early stages of viral life cycle, probably by destructuring the viral particles blocking the virus-cell fusion.