The chemo-prophylactic efficacy of an ethanol Moringa oleifera leaf extract against hepatocellular carcinoma in rats.
Ontology highlight
ABSTRACT: Hepatocellular carcinoma (HCC) is among the most well-known threatening tumours around the world, and the outlook remains bleak. Moringa oleifera Lam. (Moringaceae) exhibits antitumor, antioxidant and hepatoprotective properties.To assess the chemo-prophylactic proficiency and other likely activities of Moringa oleifera leaf ethanol extract (MOLEE) against diethyl nitrosamine (DEN)-induced HCC.Wistar rats were gastrogavaged with MOLEE (500?mg/kg) for one week and then gastrogavaged with MOLEE and DEN (10?mg/kg) for the following 16?weeks. The progressions of the histological components, serum biomarkers and oxidation of DNA of the liver tissues were resolved to assess the prophylactic impacts. The lipid oxidative biomarker, the cancer prevention agent status and apoptotic proteins were surveyed to assess the potential mechanisms.The MOLEE LD50 was estimated to be 5585?mg/kg. MOLEE (500?mg/kg) administration fundamentally repressed the expansion event of knobs and the normal knob number per knob-bearing livers prompted by DEN, enhanced hepatocellular appearance and altogether significantly decreased (p?DISCUSSION AND CONCLUSIONSThe outcomes presume that MOLEE inspired critical defensive impacts against DEN-induced hepatocarcinogenesis that might be identified with the implementation of antioxidant activity and actuation of apoptosis.
<h4>Context</h4>Hepatocellular carcinoma (HCC) is among the most well-known threatening tumours around the world, and the outlook remains bleak. Moringa oleifera Lam. (Moringaceae) exhibits antitumor, antioxidant and hepatoprotective properties.<h4>Objectives</h4>To assess the chemo-prophylactic proficiency and other likely activities of Moringa oleifera leaf ethanol extract (MOLEE) against diethyl nitrosamine (DEN)-induced HCC.<h4>Materials and methods</h4>Wistar rats were gastrogavaged with MO ...[more]
Project description:IntroductionMoringa oleifera is known as a 'natural nutrition of the tropics' because it provides vital nutritional supplements and a variety of pharmacological benefits. The focus of this study was to elucidate the dose dependent effects of Moringa oleifera leaf (MOL) extract on the growth of the human osteoblast-like osteosarcoma SaOS-2 cell line and primary osteoblast cells.MethodsTrypan blue & tetrazolium assay, intracellular ROS generation, chromatin condensation, cell cycle analysis, alkaline phosphatase (ALP), mineralization, and osteogenic gene expression were tested on both treated and untreated osteosarcoma SaOS-2 cells.ResultsAs revealed by cell viability assay, growth activity was observed at concentrations 25 and 50 μg/mL of MOL extract, whereas 100 and 200 μg/mL doses decreased the proliferation activity, resulting in ROS production and chromatin condensation. Cell cycle study revealed that MOL extract at 50 and 100 μg/mL concentrations arrested the cells in the G2/M phase. Low doses increased the ALP levels, mineralization, and expression of the bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (Runx2) genes in osteoblast-like SaOS-2 cells, however, high doses inhibited the proliferation properties of MOL extract. Through AutoDock Vina and iGEMDOCK 2.1, the interaction of active components of MOL, such as β-sitosterol, quercetin and kaempferol, with BMP2 and Runx2 proteins revealed a reasonable binding affinity. Moreover, these components did not show any Lipinski's rule of five violation and showed predictable pharmacokinetic properties.ConclusionThe results of the biphasic dose-response of MOL extract on the growth activity of osteoblast-like SaOS-2 cells and in silico binding interface, may provide a therapeutic and/or preventive implication in prospective drug development.
Project description:IntroductionMoringa leaves (Moringa oleifera), which are members of the Moringaceae family, are one of the herbal plants that are widely known in Indonesia. Phytochemical contents of moringa leaf, such as flavonoid, quercetin, and phenolic acid, are believed to have an effect on improvement of NAFLD. Therefore, moringa leaf is considered as one the herbal plants that can be used as supplementation in the form of adjuvant therapy to NAFLD. The study objective of our research is to review the effect of giving moringa leaf to the liver, especially the histopathologic features. This study will be conducted on literature review research design, more specifically in the form of a systematic review. Research Method. Five major electronic web databases, including PubMed, Cochrane Library, Google Scholar, Scopus, and ScienceDirect, were used in identifying literature from 2014 to 2023.ResultsFrom a comprehensive analysis of 13 relevant literature sources, we elucidate the impact of Moringa oleifera leaf extract on liver histopathology, glucose, and lipid metabolism. Furthermore, we provide insights into its safety profile concerning human health.ConclusionThe phytochemical content of Moringa oleifera leaf extract had shown a significant benefit in plant medicinal sector. From the research that had been done, Moringa oleifera leaf extract contributes to give significant improvement on liver histopathological features, glucose, and lipid metabolism on animal sample model.
Project description:Mesenchymal stem cells (MSCs) have seen an elevated use in clinical works like regenerative medicine. Its potential therapeutic properties increases when used in tandem with complementary agents like bio-based materials. Therefore, the present study is the first to investigate the cytotoxicity of a highly valued medicinal plant, Moringa oleifera, on human Wharton's Jelly mesenchymal stem cells (hWJMSCs) and its effects on the cells' gene expression when used as a pre-treatment agent in vitro. M. oleifera leaves (MOL) were dried and subjected to UHPLC-QTOF/MS analysis, revealing several major compounds like apigenin, kaempferol, and quercetin in the MOL, with various biological activities like antioxidant and anti-cancer properties. We then treated the hWJMSCs with MOL and noticed a dose-dependant inhibition on the cells' proliferation. RNA-sequencing was performed to explain the possible mechanism of action and revealed genes like PPP1R1C, SULT2B1, CDKN1A, mir-154 and CCNB1, whose expression patterns were closely associated with the negative cell cycle regulation and cell cycle arrest process. This is also evident from gene set enrichment analysis where the GO and KEGG terms for down-regulated pathways were closely related to the cell cycle regulation. The Ingenuity pathway analysis (IPA) software further predicted the significant activation of (p < 0.05, z-score > 2) of the G2/M DNA damage checkpoint regulation pathway. The present study suggests that MOL exhibits an antiproliferative effect on hWJMSCs via cell cycle arrest and apoptotic pathways. We believe that this study provides an important baseline reference for future works involving MOL's potential to accompany MSCs for clinical works. Future works can take advantage of the cell's strong anti-cancer gene expression found in this study, and evaluate our MOL treatment on various cancer cell lines.
Project description:BackgroundChronic administration of steroids like dexamethasone produces symptoms including weight loss and skeletal muscle dysfunction. Similar events are reported in chronic or high-intensity exercises, that can lead to fatigue and muscle damage.ObjectiveIn the present study, the effect of Moringa oleifera leaf extract was evaluated against dexamethasone (Dex) and exercise (Exe)-induced muscle changes in rats.Materials and methodsSix groups each containing 6 rats, namely normal, Dex control, Exe Control, Dex + M. oleifera leaf extract (300mg/kgp.o.), Dex + Exe, Dex + Exe + M. oleifera leaf extract were assessed in the study. Dex was administered at 0.6 mg/kg i.p. daily for 7 days. Exercise was given for a total of 10 days after 30 minutes of dosing using treadmill equipment for 900 seconds at speed 18 m/min. Animals were assessed for variation in body weight, muscular endurance using treadmill, locomotor activity using actophotometer, motor coordination using rotarod on day zero, and day seven. Hemidiaphragm of rats were isolated and used for evaluation of the glucose uptake. Gastrocnemius muscle was isolated and subjected to hematoxylin and eosin staining.ResultsDex and Exe control animals showed a significant decrease in skeletal muscle activity when compared to normal control animals in the actophotometer test. Improvement in endurance were seen in Dex + M. oleifera leaf extract, and Dex + exercise + M. oleifera leaf extract groups compared to Dex control group. Improvement in locomotor activity was seen in Dex group subjected to exercise and was significant when treated with M. oleifera leaf extract. Histology reports were in accordance with the functional parameters.ConclusionM. oleifera leaf extract supplemented with exercise showed a reversal in the dexamethasone-induced functional impairment in skeletal muscles.
Project description:BackgroundThe incidence of lung cancer is expected to increase due to increases in exposure to airborne pollutants and cigarette smoke. Moringa oleifera (MO), a medicinal plant found mainly in Asia and South Africa is used in the traditional treatment of various ailments including cancer. This study investigated the antiproliferative effect of MO leaf extract (MOE) in cancerous A549 lung cells.MethodsA crude aqueous leaf extract was prepared and the cells were treated with 166.7 μg/ml MOE (IC50) for 24 h and assayed for oxidative stress (TBARS and Glutathione assays), DNA fragmentation (comet assay) and caspase (3/7 and 9) activity. In addition, the expression of Nrf2, p53, Smac/DIABLO and PARP-1 was determined by Western blotting. The mRNA expression of Nrf2 and p53 was assessed using qPCR.ResultsA significant increase in reactive oxygen species with a concomitant decrease in intracellular glutathione levels (p < 0.001) in MOE treated A549 cells was observed. MOE showed a significant reduction in Nrf2 protein expression (1.89-fold, p < 0.05) and mRNA expression (1.44-fold). A higher level of DNA fragmentation (p < 0.0001) was seen in the MOE treated cells. MOE's pro-apoptotic action was confirmed by the significant increase in p53 protein expression (1.02-fold, p < 0.05), p53 mRNA expression (1.59-fold), caspase-9 (1.28-fold, p < 0.05), caspase-3/7 (1.52-fold) activities and an enhanced expression of Smac/DIABLO. MOE also caused the cleavage and activation of PARP-1 into 89 KDa and 24 KDa fragments (p < 0.0001).ConclusionMOE exerts antiproliferative effects in A549 lung cells by increasing oxidative stress, DNA fragmentation and inducing apoptosis.
Project description:In our study, we aimed to evaluate the effects of Moringa oleifera leaves extract on rat paraoxonase 1 (rPON1) and catalase (rCAT) activities in alloxan-induced diabetic rats. Our study included three groups; group C (control, n = 5); group D (diabetic, n = 5); and group DM (M. oleifera extract-supplemented diabetic rats, n = 5). Daily oral administration of M. oleifera extract at 200 mg/kg doses produced an increase in endogenous antioxidants. Serum rPON1 (lactonase) and liver cytosol catalase activities were determined by a spectrophotometric assay using progress curve analysis. We found a decrease in the Vm value of rPON1 in diabetic rats, but dihydrocoumarin (DHC) affinity (Km) was slightly increased. The value of Vm for the DM group was found to be reduced approximately by a factor of 3 compared with those obtained for group C, whereas Km was largely changed (96 times). Catalase activity was significantly higher in the DM group. These data suggest that the activation of rPON1 and rCAT activities by M. oleifera extracts may be mediated via the effect of the specific flavonoids on the enzyme structure. In addition, through molecular blind docking analysis, rPON1 was found to have two binding sites for flavonoids. In contrast, flavonoids bound at four sites in rCAT. In conclusion, the data suggest that compounds from M. oleifera leaves extract were able to influence the catalytic activities of both enzymes to compensate for the changes provoked by diabetes in rats.
Project description:Moringa oleifera is a medicinal plant that has anti-inflammatory, antihypertensive, antidiabetic, tissue-protective, and antioxidant activities. Here, we evaluated the protective effect of M. oleifera leaf powder (MoLP) and 70% ethanol M. oleifera leaf extract (MoLE) on mitigating polycystic ovary syndrome (PCOS)-induced liver and kidney dysfunction via regulating oxidative stress in female albino mice (Mus musculus). The efficacy of M. oleifera was compared with metformin (standard medicine used to treat infertility in women). PCOS was induced by intramuscular injection of testosterone enanthate at 1.0 mg/100 g BW for 35 days. PCOS-induced mice were treated with MoLP (250 and 500 mg/Kg), MoLE (250 and 500 mg/kg), and metformin (250 mg/kg) orally for 14 days. Renal function test (RFT), liver function test (LFT), and oxidative stress biomarker malondialdehyde (MDA) were quantified in serum at 0, 7, and 14 days of intervention. Mice treated with M. oleifera and metformin showed a significant decrease (p < .001) in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphate (ALP), total bilirubin, urea, creatinine, and a significant increase (p < .001) in total protein, albumin, globulin, and albumin/globulin (A/G) ratio. Oxidative stress decreased significantly (p = .00) with respect to treatments, exposure days, and their interaction in metformin and all M. oleifera-treated groups. M. oleifera leaf powder and extract reduce oxidative stress and enhance nephron-hepatic activity in PCOS-induced female albino mice.
Project description:BackgroundArtificial insemination (AI) is an effective reproductive technique to improve the performance of cashmere goats and prevent the spread of diseases, and the quality of the semen determines the success of AI. The potential of Moringa oleifera leaf powder (MOLP) and Moringa oleifera leaf ethanolic extract (MOLE) to improve semen quality has been reported, but the underlying mechanisms remain unclear. For the purpose, 18 mature male cashmere goats were randomly assigned into three groups: the control (CON), MOLP, and MOLE groups. The CON group received distilled water orally; the MOLP group was orally treated with 200 mg/kg body weight (BW) MOLP; and the MOLE group was orally treated with 40 mg/kg BW MOLE.ResultsResults showed that MOLE contained long-chain fatty acids and flavonoids. Treatment with MOLP and MOLE increased the activities of the serum catalase, superoxide dismutase, and glutathione peroxidase (P < 0.05), enhanced the total antioxidant capacity (P < 0.05), and reduced the serum malondialdehyde level (P < 0.05). At the same time, MOLE increased the contents of serum gonadotropin releasing hormone and testosterone (P < 0.05). Moreover, MOLE significantly increased sperm concentration, motility, and viability (P < 0.05). Meanwhile, MOLE raised the Chao1 index (P < 0.05) and altered the composition of the rumen microbiota; it also raised the relative abundance of Treponema (P < 0.05) and Fibrobacter (P < 0.05) and reduced the relative abundance of Prevotella (P < 0.1). Correlation analysis revealed the genus Prevotella was significantly negatively correlated with sperm concentration, as well as sperm motility and viability. Furthermore, MOLE significantly increased the rumen levels of the steroid hormones testosterone and dehydroepiandrosterone (P < 0.05), as well as the polyunsaturated fatty acids (PUFAs) alpha-Linolenic acid, gamma-Linolenic acid, docosapentaenoic acid, and 9-S-Hydroperoxylinoleicacid (P < 0.05).ConclusionsOral MOLE supplementation can improve semen quality by increasing the antioxidant capacity and altering the rumen microbiota and metabolites of cashmere goats. Moreover, the MOLP supplementation could enhance the antioxidant capacity of cashmere goats.
Project description:Moringa oleifera Lam. is a tropical plant, used for centuries as food and traditional medicine. The aim of this study was to develop, validate and biochemically characterize an isothiocyanate-enriched moringa seed extract (MSE), and to compare the anti-inflammatory effects of MSE-containing moringa isothiocyanate-1 (MIC-1) with a curcuminoid-enriched turmeric extract (CTE), and a material further enriched in its primary phytochemical, curcumin (curcumin-enriched material; CEM). MSE was prepared by incubating ground moringa seeds with water to allow myrosinase-catalyzed enzymatic formation of bioactive MIC-1, the predominant isothiocyanate in moringa seeds. Optimization of the extraction process yielded an extract of 38.9% MIC-1. Phytochemical analysis of MSE revealed the presence of acetylated isothiocyanates, phenolic glycosides unique to moringa, flavonoids, fats and fatty acids, proteins and carbohydrates. MSE showed a reduction in the carrageenan-induced rat paw edema (33% at 500 mg/kg MIC-1) comparable to aspirin (27% at 300 mg/kg), whereas CTE did not have any significant effect. In vitro, MIC-1 at 1 μM significantly reduced the production of nitric oxide (NO) and at 5 μM, the gene expression of LPS-inducible nitric oxide synthase (iNOS) and interleukins 1β and 6 (IL-1β and IL-6), whereas CEM did not show any significant activity at all concentrations tested. MIC-1 (10μM) was also more effective at upregulating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase pi 1 (GSTP1), and heme oxygenase 1 (HO1) than the CEM. Thus, in contrast to CTE and CEM, MSE and its major isothiocyanate MIC-1 displayed strong anti-inflammatory and antioxidant properties in vivo and in vitro, making them promising botanical leads for the mitigation of inflammatory-mediated chronic disorders.
Project description:Moringa oleifera Lam. (family; Moringaceae), commonly known as drumstick, have been used for centuries as a part of the Ayurvedic system for several diseases without having any scientific data. Demineralized water was used to prepare aqueous extract by maceration for 24 h and complete metabolic profiling was performed using GC-MS and HPLC. Hypoglycemic properties of extract have been tested on carbohydrate digesting enzyme activity, yeast cell uptake, muscle glucose uptake, and intestinal glucose absorption. Type 2 diabetes was induced by feeding high-fat diet (HFD) for 8 weeks and a single injection of streptozotocin (STZ, 45 mg/kg body weight, intraperitoneally) was used for the induction of type 1 diabetes. Aqueous extract of M. oleifera leaf was given orally at a dose of 100 mg/kg to STZ-induced rats and 200 mg/kg in HFD mice for 3 weeks after diabetes induction. Aqueous extract remarkably inhibited the activity of α-amylase and α-glucosidase and it displayed improved antioxidant capacity, glucose tolerance and rate of glucose uptake in yeast cell. In STZ-induced diabetic rats, it produces a maximum fall up to 47.86% in acute effect whereas, in chronic effect, it was 44.5% as compared to control. The fasting blood glucose, lipid profile, liver marker enzyme level were significantly (p < 0.05) restored in both HFD and STZ experimental model. Multivariate principal component analysis on polar and lipophilic metabolites revealed clear distinctions in the metabolite pattern in extract and in blood after its oral administration. Thus, the aqueous extract can be used as phytopharmaceuticals for the management of diabetes by using as adjuvants or alone.