Cactus cladodes (Opuntia humifusa) extract minimizes the effects of UV irradiation on keratinocytes and hairless mice.
Ontology highlight
ABSTRACT: Cactus cladodes [Opuntia humifusa (Raf.) Raf. (Cactaceae)] is one of the cactus genera, which has long been used as a folk medicine for skin disorders.This study investigated the skincare potential of cactus cladodes extract (OHE), including its ability to regulate ultraviolet B (UVB)-induced hyaluronic acid (HA) production.Gene expression levels of hyaluronic acid synthases (HASs) and hyaluronidase (HYAL) were measured in UVB-irradiated HaCaT cells with OHE treatment (10, 25, 50, 100??g/mL) by real-time polymerase chain reaction (PCR). The HA content was analyzed in hairless mice (SKH-1, male, 6 weeks old) treated with OHE for 10 weeks by using enzyme-linked immunosorbent assay (ELISA). Haematoxylin and eosin (H&E) and immunohistological staining were performed to examine epidermal thickness and levels of CD44 and hyaluronic acid-binding protein (HABP).HA synthases (HAS,1 HAS2, HAS3) mRNA levels were increased by 1.9-, 2.2- and 1.6-fold, respectively, with OHE treatment (100??g/mL), while UVB-induced increase of hyaluronidase mRNA significantly decreased by 35%. HA content in animal was decreased from 42.9 to 27.1?ng/mL by OHE treatment. HAS mRNA levels were decreased by 39%, but HYAL mRNA was increased by 50% in OHE group. CD44 and HABP levels, which were greatly increased by UVB-irradiation, were reduced by 64 and 60%, respectively. Epidermal thickness, transepidermal water loss (TEWL), and erythema formation was also decreased by 45 (45.7 to 24.2??m), 48 (48.8 to 25?g/h/m2) and 33%, respectively.OHE protects skin from UVB-induced skin degeneration in HaCaT cells and hairless mice.
<h4>Context</h4>Cactus cladodes [Opuntia humifusa (Raf.) Raf. (Cactaceae)] is one of the cactus genera, which has long been used as a folk medicine for skin disorders.<h4>Objective</h4>This study investigated the skincare potential of cactus cladodes extract (OHE), including its ability to regulate ultraviolet B (UVB)-induced hyaluronic acid (HA) production.<h4>Materials and methods</h4>Gene expression levels of hyaluronic acid synthases (HASs) and hyaluronidase (HYAL) were measured in UVB-irrad ...[more]
Project description:The high antimicrobial ability and low toxicity of zinc-aminoclay (ZnAC) are claimed in our previous reports. In this study, we formulate a novel hand gel based on ZnAC and Opuntia humifusa (O. humifusa) extract, which is a high moisturizing agent. The antimicrobial activity, cytotoxicity, moisturizing effect, and clinical skin irritation of the hand gel are evaluated. The hand gel with 0.5 wt.% ZnAC and 1.0 v/v% O. humifusa extract can kill more than 99% Escherichia coli (gram-negative bacteria) and Staphylococcus aureus (gram-positive bacteria) after 24 h. Toxicity evaluation shows that, the hand gel does not affect the viability of mammalian HaCaT cells. Additionally, skin moisture is increased by applying the hand gel while its viscosity is at the standard level of commercial products. The hand gel has a skin irritation index of 0.0 and is classified as a non-irritating product. We successfully formulated hand gel from ZnAC, glucomannan, glycerol, and O. humifusa extract. Owing to the high antimicrobial activity and skin protection of hand gels, they are suitable to be used as hand sanitizers in restaurants, hospitals, and homes effectively.
Project description:Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest functional effect was found using ethyl acetate extracts. In conclusion, fermentation, especially with L. plantarum strains and L. brevis POM4, enhanced the antioxidant and immune-modulation features of cladode pulp.
Project description:Background and aimsDrought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents.MethodsRates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions.Key resultsDaily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes.ConclusionsDaughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM.
Project description:Opuntia humifusa is a type of cactus whose fruits have been used in folk medicine for the treatment of several diseases. In the present study, we aimed to determine whether O. humifusa fruit water extract (OHE) has inhibitory effects against solar ultraviolet (sUV)-induced matrix metalloproteinase-1 (MMP-1) expression. In ex vivo human skin, we found that OHE suppressed sUV radiation-induced MMP-1 expression. The inhibitory effect of OHE was confirmed in human dermal fibroblasts. OHE treatment reduced sUV-induced MMP-1 expression by suppressing reactive oxygen species (ROS) generation and phosphorylation of c-Jun, a component of transcription factor activator protein 1 (AP-1). On the other hand, OHE recovered the tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and type 1 collagen production attenuated by sUV. As upstream signaling pathways for AP-1, MKK4-JNK, MEK-ERK, and MKK3/6-p38 phosphorylation were downregulated by OHE treatment. In addition, OHE exhibited DPPH radical scavenging activity. These findings demonstrate that OHE has a preventive effect against sUV-induced skin damage via suppression of pathways triggered by ROS.
Project description:BACKGROUND:The Opuntia spp. have been used in traditional medicine for many centuries. It is used in the management of diseases that involves oxidative stress, especially diabetes, obesity and cancer. Opuntia stricta (Haw) is one of the relatively unknown species in South Africa where it is regarded more as a weed. Because of this, not much is known about its chemical composition. AIM:To determine the chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. METHODS:The phytochemical composition of acetone, aqueous and ethanol extract of cladodes of Opuntia stricta (Haw), as well as the vitamins A, C and E of its dried weight cladodes and the antioxidant activities, were evaluated using standard in vitro methods. The anti-inflammatory and cytotoxic activities were evaluated using cell-based assays. The phytochemical composition and vitamins were determined spectrophotometrically, while the antioxidant activities were determined by DPPH, nitric oxide, hydrogen peroxide scavenging activity and phosphomolybdenum (total) antioxidant activity. Anti-inflammatory activity was determined using RAW 264.7 cells, while cytotoxicity was determined using U937 cells. RESULTS:The phytochemical composition showed a significant difference in the various extracts. The total phenolics were higher than other phytochemicals in all the extracts used. All the extracts displayed antioxidant activity, while most of the extracts showed anti-inflammatory activity. Only one extract showed cytotoxicity, and it was mild. CONCLUSION:The results show that the Opuntia stricta is rich in polyphenolic compounds and has good antioxidant activity as well as anti-inflammatory activities.
Project description:Although apoptosis of keratinocytes has been relatively well studied, there is a lack of information comparing potentially proapoptotic treatments for healthy and diseased skin cells. Psoriasis is a chronic autoimmune-mediated skin disease manifested by patches of hyperproliferative keratinocytes that do not undergo apoptosis. UVB phototherapy is commonly used to treat psoriasis, although this has undesirable side effects, and is often combined with anti-inflammatory compounds. The aim of this study was to analyze if cannabidiol (CBD), a phytocannabinoid that has anti-inflammatory and antioxidant properties, may modify the proapoptotic effects of UVB irradiation in vitro by influencing apoptotic signaling pathways in donor psoriatic and healthy human keratinocytes obtained from the skin of five volunteers in each group. While CBD alone did not have any major effects on keratinocytes, the UVB treatment activated the extrinsic apoptotic pathway, with enhanced caspase 8 expression in both healthy and psoriatic keratinocytes. However, endoplasmic reticulum (ER) stress, characterized by increased expression of caspase 2, was observed in psoriatic cells after UVB irradiation. Furthermore, decreased p-AKT expression combined with increased 15-d-PGJ2 level and p-p38 expression was observed in psoriatic keratinocytes, which may promote both apoptosis and necrosis. Application of CBD partially attenuated these effects of UVB irradiation both in healthy and psoriatic keratinocytes, reducing the levels of 15-d-PGJ2, p-p38 and caspase 8 while increasing Bcl2 expression. However, CBD increased p-AKT only in UVB-treated healthy cells. Therefore, the reduction of apoptotic signaling pathways by CBD, observed mainly in healthy keratinocytes, suggests the need for further research into the possible beneficial effects of CBD.
Project description:Natural by-products, especially phenolic compounds, are in great demand by the nutra-pharmaceutical and biomedical industries. An analytical study was performed to investigate, for the first time, the presence of antioxidant constituents and the corresponding in vitro antioxidant activity in the extract of cladodes from Ficodindia di San Cono (Opuntia ficus-indica) protected designation of origin (PDO). The cladode extracts were analysed for target determination of selected constituents, i.e. β-polysaccharides and total phenolic content. Moreover, the antioxidant activity of hydro-alcoholic extracts was assessed by means of two different methods: α, α-diphenyl-β-picrylhydrazyl (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay. An untargeted UHPLC-ESI-QTOF-MS profiling approach was used to depict the phenolic profile of hydro-alcoholic cladode extracts. Interestingly, over 2 g/kg of polyphenols were detected in this matrix, and these compounds were mainly responsible for the antioxidant properties, as shown by the strong correlation between phenolic classes and antioxidant scores. Finally, this study provides basic information on the presence of bioactive compounds and in vitro antioxidant activities in cladode extracts from cactus that might recommend their novel applications at the industrial level in the field of nutraceutical products.
Project description:A study was undertaken to determine the effects of a strain of Arthrobacter sp., a Plant Growth-Promoting Bacteria (PGPB), on plant phenology and qualitative composition of Opuntia ficus-indica (L.) Mill. fruits and cladodes. The strain was inoculated in soil, and its effects on cactus pear plants were detected and compared to nontreated plants. Compared to the latter, the treatment with bacteria promoted an earlier plant sprouting (2 months before the control) and fruitification, ameliorating fruit quality (i.e., improved fresh and dry weight: + 24% and + 26%, respectively, increased total solid content by 30% and polyphenols concentrations by 22%). The quality and quantity of monosaccharides of cladodes were also increased by Arthrobacter sp. with a positive effect on their nutraceutical value. In summer, the mean values of xylose, arabinose, and mannose were significantly higher in treated compared to not treated plants (+ 3.54; + 7.04; + 4.76 mg/kg d.w. respectively). A similar trend was observed in autumn, when the cladodes of inoculated plants had higher contents, i.e., 33% xylose, 65% arabinose, and 40% mannose, respect to the controls. In conclusion, Arthrobacter sp. plays a role in the improvement of nutritional and nutraceutical properties of cactus pear plants due to its capabilities to promote plant growth. Therefore, these results open new perspectives in PGPB application in the agro-farming system as alternative strategy to improve cactus pear growth, yield, and cladodes quality, being the latter the main by-product to be utilized for additional industrial uses.
Project description:This study aimed to assess the capability of supercritical fluid extraction (SFE) as an alternative and green technique compared to Soxhlet extraction for the production of oils from Opuntia ficus-indica (OFI) seeds originating from Yemen and Italy and Opuntia dillenii (OD) seeds from Yemen. The following parameters were used for SFE extraction: a pressure of 300 bar, a CO2 flow rate of 1 L/h, and temperatures of 40 and 60 °C. The chemical composition, including the fatty acids and tocopherols (vitamin E) of the oils, was determined using chromatographic methods. The highest yield was achieved with Soxhlet extraction. The oils obtained with the different extraction procedures were all characterized by a high level of unsaturated fatty acids. Linoleic acid (≤62% in all samples) was the most abundant one, followed by oleic and vaccenic acid. Thirty triacylglycerols (TAGs) were identified in both OFI and OD seed oils, with trilinolein being the most abundant (29-35%). Vanillin, 4-hydroxybenzaldehyde, vanillic acid, and hydroxytyrosol were phenols detected in both OFI and OD oils. The highest γ-tocopherol content (177 ± 0.23 mg/100 g) was obtained through the SFE of OFI seeds from Yemen. Overall, the results highlighted the potential of SFE as green technology to obtain oils suitable for functional food and nutraceutical products.
Project description:Osteoporosis is a disease of the skeletal system characterized by low bone mass and bone weakening, which increase the risk of fracture. This disease is associated with menopause because hypoestrogenism induces the maturation and activation of osteoclasts. In addition, a low dietary intake of calcium leads to low bone mineral density and postmenopausal osteoporosis. The objectives of this work were to determine calcium bioavailability of Opuntia ficus-indica cladodes at a late maturity stage and to assess its contribution in improving bone health in an ovariectomized rat model. Two-month-old Wistar female rats (n = 35) were used and distributed in seven experimental groups: (i) control group (Crtl), (ii) sham group (SH), (iii) ovariectomized group (OVX), (iv) ovariectomized group supplemented with calcium citrate (CCa), (v) ovariectomized group supplemented with O. ficus-indica powder (NI), (vi) ovariectomized group supplemented with soluble fiber from O. ficus-indica (FS) and (vii) ovariectomized group supplemented with insoluble fiber from O. ficus-indica (FI). Our results showed that calcium in the soluble fiber of O. ficus-indica is bioavailable and contributes to improve the physical, densitometric, biomechanical and microstructural properties of bones in ovariectomized rats. These findings indicated that O. ficus-indica cladodes at a late maturity stage represent a good source of bioavailable calcium and consumption of these cladodes might be beneficial for the prevention of osteoporosis and other bone diseases.