Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia - An in vitro and in silico study.
Ontology highlight
ABSTRACT: Grewia tiliaefolia Vahl. (Tiliaceae) is a sub-tropical plant used as an indigenous medicine in India. However, its efficacy has not been evaluated against Alzheimer's disease.The objective of this study is to evaluate cholinesterase inhibitory, anti-aggregation and neuroprotective activity of G. tiliaefolia.Grewia tiliaefolia leaves were collected from Eastern Ghats region, India, and subjected to successive extraction (petroleum ether, chloroform, ethyl acetate, methanol and water). The extracts were subjected to in vitro antioxidant, anticholinesterase and anti-aggregation assays. The active methanol extract (MEGT) was separated using column chromatography. LC-MS analysis was done and the obtained compounds were docked against acetylcholinesterase (AChE) enzyme to identify the active component.Antioxidant assays demonstrated that the MEGT showed significant free radical scavenging activity at the IC50 value of 71.5?±?1.12??g/mL. MEGT also exhibited significant dual cholinesterase inhibition with IC50 value of 64.26?±?2.56 and 54?±?0.7??g/mL for acetyl and butyrylcholinesterase (BChE), respectively. Also, MEGT showed significant anti-aggregation activity by preventing the oligomerization of A?25-35. Further, MEGT increased the viability of Neuro2a cells up to 95% against A?25-35 neurotoxicity. LC-MS analysis revealed the presence of 16 compounds including vitexin, ellagic acid, isovitexin, etc. In silico analysis revealed that vitexin binds effectively with AChE through strong hydrogen bonding. These results were further confirmed by evaluating the activity of vitexin in vitro, which showed dual cholinesterase inhibition with IC50 value of 15.21?±?0.41 and 19.75?±?0.16??M for acetyl and butyrlcholinesterase, respectively.Grewia tiliaefolia can be considered as a promising therapeutic agent for the treatment of AD.
<h4>Context</h4>Grewia tiliaefolia Vahl. (Tiliaceae) is a sub-tropical plant used as an indigenous medicine in India. However, its efficacy has not been evaluated against Alzheimer's disease.<h4>Objectives</h4>The objective of this study is to evaluate cholinesterase inhibitory, anti-aggregation and neuroprotective activity of G. tiliaefolia.<h4>Materials and method</h4>Grewia tiliaefolia leaves were collected from Eastern Ghats region, India, and subjected to successive extraction (petroleum et ...[more]
Project description:Medicinal plants possess range of phytochemicals accountable for their diverse biological activities. Presently, such compounds have been isolated from medicinal plants, characterized and evaluated for their pharmacological potential. In the present study, the efforts have been made to isolate the compound(s) from Grewia tiliaefolia Vahl., plant known for its ameliorative effect on brain related diseases such as anxiety, depression, cognitive disorders and Parkinson's disease. Plant extract was subjected to isolation of compound(s) using column chromatography and isolated compound was characterized by NMR FTIR and LCMS. The isolated compound was novel with the IUPAC name of the compound is propyl 3-hydroxy-10,13-dimethyl-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthrene-17-carboxylate, designated as A-1 and has not been reported before. A-1 was further evaluated for its antioxidant potential using in vitro antioxidant assays (2,2-diphenyl-1-picryl-hydrazyl-hydrate, DPPH assay and reducing power assay, RPA). Also, Acetylcholinesterase (AChE) inhibitory potential of A-1 and extract was analysed. Results showed that A-1 exhibited significantly higher antioxidant activity in both DPPH and RPA assay as compared to plant extract. In case of AChE inhibitory activity again, A-1 has shown significantly higher activity as compared to plant extract. In silico study was conducted to predict its action on proteins playing crucial role in neurological and neurodegenerative disorders such as gamma amino butyric acid (GABA) receptor and glutamate α amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (Glu AMPA) receptor in epilepsy and AChE enzyme in Alzheimer's diseases. The compound has shown interaction in following order: AChE > GABA receptor > Glu AMPA receptor. Further, molecular dynamic simulations and ADME studies of A-1 and AChE enzyme revealed that A-1 yielded good results in all parameters and hence can relieve Alzheimer's like symptoms.
Project description:BackgroundCinnamomum verum J. Presl. (Lauraceae), Myrtus communis L. (Myrtaceae), Ruta graveolens L. (Rutaaceae), Anethum graveolens L. (Apiaceae), Myristica fragrans Houtt. (Myristicaceae), and Crocus sativus L. (Iridaceae) have been recommended for improvement of memory via inhalation, in Iranian Traditional Medicine (ITM). In this respect, the essential oils (EOs) from those plants were obtained and evaluated for cholinesterase (ChE) inhibitory activity as ChE inhibitors are the available drugs in the treatment of Alzheimer's disease (AD).MethodsEOs obtained from the plants under investigation, were evaluated for their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro based on the modified Ellman's method. The most potent EO was candidate for the investigation of its beta-secretase 1 (BACE1) inhibitory activity and neuroprotectivity.ResultsAmong all EOs, C. verum demonstrated the most potent activity toward AChE and BChE with IC50 values of 453.7 and 184.7 µg/mL, respectively. It also showed 62.64% and 41.79% inhibition against BACE1 at the concentration of 500 and 100 mg/mL, respectively. However, it depicted no neuroprotective potential against β-amyloid (Aβ)-induced neurotoxicity in PC12 cells. Also, identification of chemical composition of C. verum EO was achieved via gas chromatography-mass spectrometry (GC-MS) analysis and the major constituent; (E)-cinnamaldehyde, was detected as 68.23%.ConclusionPotent BChE inhibitory activity of C. verum EO can be considered in the development of cinnamon based dietary supplements for the management of patients with advanced AD.
Project description:Alzheimer's disease (AD) is one of the most common neurodegenerative diseases with a multifactorial nature. ?-Secretase (BACE1) and acetylcholinesterase (AChE), which are required for the production of neurotoxic ?-amyloid (A?) and the promotion of A? fibril formation, respectively, are considered as prime therapeutic targets for AD. In our efforts towards the development of potent multi-target, directed agents for AD treatment, major phlorotannins such as eckol, dieckol, and 8,8'-bieckol from Ecklonia cava (E. cava) were evaluated. Based on the in vitro study, all tested compounds showed potent inhibitory effects on BACE1 and AChE. In particular, 8,8'-bieckol demonstrated the best inhibitory effect against BACE1 and AChE, with IC50 values of 1.62 ± 0.14 and 4.59 ± 0.32 µM, respectively. Overall, kinetic studies demonstrated that all the tested compounds acted as dual BACE1 and AChE inhibitors in a non-competitive or competitive fashion, respectively. In silico docking analysis exhibited that the lowest binding energies of all compounds were negative, and specifically different residues of each target enzyme interacted with hydroxyl groups of phlorotannins. The present study suggested that major phlorotannins derived from E. cava possess significant potential as drug candidates for therapeutic agents against AD.
Project description:BACKGROUND:Human Immunodeficiency Virus (HIV) persists to be a significant public health issue worldwide. The current strategy for the treatment of HIV infection, Highly Active Antiretroviral Therapy (HAART), has reduced deaths from AIDS related disease, but it can be an expensive regime for the underdeveloped and developing countries where the supply of drugs is scarce and often not well tolerated, especially in persons undergoing long term treatment. The present therapy also has limitations of development of multidrug resistance, thus there is a need for the discovery of novel anti-HIV compounds from plants as a potential alternative in combating HIV disease. METHODS:Ten Indian medicinal plants were tested for entry and replication inhibition against laboratory adapted strains HIV-1IIIB, HIV-1Ada5 and primary isolates HIV-1UG070, HIV-1VB59 in TZM-bl cell lines and primary isolates HIV-1UG070, HIV-1VB59 in PM1 cell lines. The plant extracts were further evaluated for toxicity in HEC-1A epithelial cell lines by transwell epithelial model. RESULTS:The methanolic extracts of Achyranthes aspera, Rosa centifolia and aqueous extract of Ficus benghalensis inhibited laboratory adapted HIV-1 strains (IC80 3.6-118 μg/ml) and primary isolates (IC80 4.8-156 μg/ml) in TZM-bl cells. Methanolic extract of Strychnos potatorum, aqueous extract of Ficus infectoria and hydroalcoholic extract of Annona squamosa inhibited laboratory adapted HIV-1 strains (IC80 4.24-125 μg/ml) and primary isolates (IC80 18-156 μg/ml) in TZM-bl cells. Methanolic extracts of Achyranthes aspera and Rosa centifolia, (IC801-9 μg/ml) further significantly inhibited HIV-1 primary isolates in PM1cells. Methanolic extracts of Tridax procumbens, Mallotus philippinensis, Annona reticulate, aqueous extract of Ficus benghalensis and hydroalcoholic extract of Albizzia lebbeck did not exhibit anti-HIV activity in all the tested strains. Methanolic extract of Rosa centifolia also demonstrated to be non-toxic to HEC-1A epithelial cells and maintained epithelial integrity (at 500 μg/ml) when tested in transwell dual-chamber. CONCLUSION:These active methanolic extracts of Achyranthes aspera and Rosa centifolia, could be further subjected to chemical analysis to investigate the active moiety responsible for the anti-HIV activity. Methanolic extract of Rosa centifolia was found to be well tolerated maintaining the epithelial integrity of HEC-1A cells in vitro and thus has potential for investigating it further as candidate microbicide.
Project description:Canine cognitive dysfunction (CCD) is an age-dependent neurodegenerative condition characterised by changes in decline in learning and memory patterns. The neurodegenerative features of CCD in ageing dogs and cats are similar to human ageing and Alzheimer's disease (AD). Discovering neuroprotective disease-modifying therapies against CCD and AD is a major challenge. Strong evidence supports the role of amyloid ? peptide deposition and oxidative stress in the pathophysiology of CCD and AD. In both the human and canine brain, oxidative damage progressively increases with age. Dietary antioxidants from natural sources hold a great promise in halting the progression of CCD and AD. Withania somnifera (WS), an Ayurvedic tonic medicine, also known as 'Indian ginseng' or ashwagandha has a long history of use in memory-enhancing therapy but there is a dearth of studies on its neuroprotective effects. The objective of this study was to investigate whether WS extract can protect against A? peptide- and acrolein-induced toxicity. We demonstrated that treatment with WS extract significantly protected the human neuroblastoma cell line SK-N-SH against A? peptide and acrolein in various cell survival assays. Furthermore, treatment with WS extract significantly reduced the generation of reactive oxygen species in SK-N-SH cells. Finally, our results showed that WS extract is also a potent inhibitor of acetylcholinesterase activity. Thus, our initial findings indicate that WS extract may act as an antioxidant and cholinergic modulator and may have beneficial effects in CCD and AD therapy.
Project description:Background:Alzheimer's disease (AD) is a progressive neurodegenerative disorder clinically characterized by memory loss and impaired cognitive function. Cholinergic enzyme deficiency and oxidative stress are the two major factors implicated in the pathogenesis of AD. The symptomatic treatment, as of now, is the use of cholinesterase inhibitors toward cholinergic "downturn." Therefore, there is a search for compounds that will be useful in focused therapies. There has been suggestion that Terminalia chebula fruit would be a potential source. Objective:To assess the anticholinesterase and antioxidant activities of T. chebula fruit which is widely practiced in the Ayurvedic medicines for memory enhancement. Materials and Methods:Ethyl acetate extract of T. chebula fruit (TCEA) was subjected to phytochemical investigation of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities and cell-free antioxidant activity. TCEA was further subjected to gas chromatography-mass spectrum (GC-MS) analysis. The bioactive compounds were analyzed for molecular docking with AChE and BuChE proteins. Results:TCEA exhibited potent AChE and BuChE inhibitory activities comparable to the standard drug donepezil. In vitro cell-free antioxidant assays demonstrated that TCEA possesses excellent free radical scavenging activity, reducing power, and potent metal-chelating activity. Total polyphenolic content of TCEA was 596.75 ± 0.35 µg gallic acid equivalents/mg of extract, which correlates with the antioxidant activity of TCEA. Molecular docking of compounds expounded in GC-MS analysis for AChE and BuChE enzyme activities revealed that methyl N-(N-benzyloxycarbonyl-beta-l-aspartyl)-beta-d-glucosaminide as the most potent compound with good predicted activities. Conclusion:Overall, the results revealed that the bioactive molecule methyl N-(N-benzyloxycarbonyl-beta-l-aspartyl)-beta-d-glucosaminide present in TCEA is a potential depressant for the treatment of AD and related neurodegenerative disorders. SUMMARY:The present study was carried out to assess the neuroprotective effect of Terminalia chebula fruit and its phytoconstituent. Phytochemical analysis of fruit ethyl acetate extract of T. chebula (TCEA) showed the presence of alkaloid, cardiac glycoside, and tannin. TCEA showed potent acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities when compared to standard drug donepezil. Results of in vitro antioxidant assays revealed excellent free radical scavenging activity, reducing power, and potent metal-chelating activity. Gas chromatography-mass spectrum analysis illustrated the presence of 22 active compounds, among which methyl N-(N-benzyloxycarbonyl-beta-l-aspartyl)-beta-d-glucosaminide exhibited potent AChE and BuChE inhibition analyzed through in silico studies. Abbreviations used: AD: Alzheimer's disease; TCEA: Ethyl acetate extract of Terminalia chebula; GC-MS: Gas chromatography-mass spectrum; ROS: Reactive oxygen species; RNS: Reactive nitrogen species; AChE: Acetylcholinesterase; BuChE: Butyrylcholinesterase; NFT: Neurofibrillary tangles; A?: ?-amyloid; NSAIDS: Nonsteroidal anti-inflammatory drugs; FDA: Food and Drug Administration; RT: Room temperature; HCl: Hydrochloric acid; ATCI: Acetylthiocholine iodide; BTCI: Butyrylthiocholine iodide; BHT: Butylated hydroxytoluene; DPPH: 2,2-diphenyl-1-picrylhydrazyl; TCA: Trichloroacetic acid; GAE: Gallic acid equivalent; NICT: National Institute of Information and Communications Technology; 3D: Three-dimensional; PDB: Protein data bank; OPLS: Optimized potentials for liquid simulations; XP: Extra precision; SD: Standard deviation; ANOVA: Analysis of variance; EDTA: Ethylenediaminetetraacetic acid.
Project description:Cannabis sativa L. Cannabaceae, used for psychoactive rituals in Mesopotamia. Here, we investigated in vitro inhibitory activity of methyl alcohol extract derived from leaves and resin of cannabis against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Moreover, the binding affinity (BA; kcal/mol) of selected phytochemicals of cannabis to AChE and BChE has been predicted in silico. Phytochemicals of cannabis had acceptable BA towards AChE ranging from - 6.4 (beta-pinene) to - 11.4 (campesterol) and BChE ranging from - 5.5 (alpha-pinene) to - 9.8 (cannabioxepane). All cannabinoids, flavonoids (apigenin), terpenes, and phytosterols of cannabis were double inhibitors due they utilized hydrogen bonds and hydrophobically interacted with both catalytic triad and peripheral anionic site (PAS) of AChE and BChE. Campesterol is phytosterol docked with AChE and BChE via hydrogen bond and it will be a lead-like molecule for further drug design. Delta-9-Tetrahydrocannabinolic acid has been docked with AChE and BChE and it can be a candidate molecule for further drug design. To sum up, this study not only approved cholinesterase inhibitory effects of cannabis but also suggested an array of phytocompounds as hit small molecules for discovery or design of ecofriendly botanical antiinsectants or phytonootropic drugs.Supplementary informationThe online version contains supplementary material available at 10.1007/s40203-021-00075-0.
Project description:Dengue infections are still a worldwide burden, especially in Indonesia. There is no specific medication against the dengue virus. Recently, many types of research have been conducted to discover a new drug for dengue virus using natural resource extracts. Indonesia, as a tropical country, has a wide biodiversity. There are several medicinal plants in Indonesia that are believed to possess anti-dengue activity, such as Myristica fatua, Cymbopogon citratus, and Acorus calamus plants. We conducted an in vitro laboratory experiment of several extracts from Indonesian herbs combined with in silico analysis. The extracts were evaluated for safety and antiviral activity in Huh7it-1 cell lines, using a single dose of 20 µg/mL and dose-dependent (5, 10, 20, 40, 80 and 160 µg/mL) of plant extracts against dengue virus serotype 2 (DENV-2) NGC strain. The DMSO 0.1% was used as a negative control. The cytotoxic aspect was assessed by counting the cell viability, while the antiviral activity was calculated by counting the average inhibition. The selectivity index (SI) of plant extracts were performed from a ratio of CC50/EC50 value. In silico analysis was conducted to determine the free energy of binding between NS5 of dengue virus with bioactive compounds contained in Myristica fatua, Cymbopogon citratus and Acorus calamus extract plants. We determined that all extracts were not toxic against Huh7it-1 cell lines. The methanolic extracts of A. calamus, C. citratus, and M. fatua showed inhibition of DENV-2 at a dose of 20 µg/mL to 96.5%, 98.9%, and 122.7%, respectively. The dose-dependent effects showed that M. fatua has the best inhibition activity towards DENV-2. Molecular docking result showed that artesunic acid within M. fatua has the best free energy of binding (-7.2 kcal/mol), followed by homoegonol (-7.1 kcal/mol) which was slightly different from artesunic acid among others. The methanolic extracts of A. calamus, C. citratus, and M. fatua showed prospective anti-dengue activities both in vitro and in silico. Future research should be conducted to find the pure extracts of all useful herbs as a new candidate of antiviral drug.
Project description:Accumulation of amyloid-beta (Aβ) plaques leading to oxidative stress, mitochondrial damage, and cell death is one of the most accepted pathological hallmarks of Alzheimer's disease (AD). Pandanus amaryllifolius, commonly recognized as fragrant screw pine due to its characteristic smell, is widely distributed in Southeast Asia and is consumed as a food flavor. In search for potential anti-AD agents from terrestrial sources, P. amaryllifolius was explored for its in vitro anti-amyloidogenic and neuroprotective effects. Thioflavin T (ThT) assay and the high-throughput screening multimer detection system (MDS-HTS) assay were used to evaluate the extracts' potential to inhibit Aβ aggregations and oligomerizations, respectively. The crude alcoholic extract (CAE, 50 μg/mL) and crude base extract (CBE, 50 μg/mL) obstructed the Aβ aggregation. Interestingly, results revealed that only CBE inhibited the Aβ nucleation at 100 μg/mL. Both CAE and CBE also restored the cell viability, reduced the level of reactive oxygen species, and reversed the mitochondrial dysfunctions at 10 and 20 μg/mL extract concentrations in Aβ-insulted SY-SY5Y cells. In addition, the unprecedented isolation of nicotinamide from P. amaryllifolius CBE is a remarkable discovery as one of its potential bioactive constituents against AD. Hence, our results provided new insights into the promising potential of P. amaryllifolius extracts against AD and further exploration of other prospective bioactive constituents.
Project description:Multidrug resistance (MDR) in pathogenic bacteria have become a major clinical issue. Quorum sensing regulated bacterial virulence is a promising key drug target for MDR infections. Therefore, the aim of the present work was to assess the anti-quorum sensing properties of selected medicinal plants against bacterial pathogens as well in silico interaction of selected bioactive phytocompounds with QS and biofilm-associated proteins. Based on the ethnopharmacological usage, 18 plants were selected using methanolic extract against Chromobacterium violaceum 12472. The most active extract (Acacia nilotica) was fractionated in increasing polarity solvents (n-hexane, chloroform and ethyl acetate) and tested for anti-QS activity. The most active fraction i.e. ethyl acetate fraction was evaluated for their activity at sub-MICs against QS-associated virulence factors of Pseudomonas aeruginosa PAO1 and Serretia marcescens MTCC 97. Microtiter plate assay and light microscopy was used to determine inhibition of biofilm. Phytochemicals of the ethyl acetate fraction were analysed by GC/MS and LC/MS. Phytocompounds were docked with QS (LasI, LasR, CviR, and rhlR) and biofilm proteins (PilY1 and PilT) using Auto dock vina. The MIC of ethyl acetate fraction determined was 250, 500, and 1000 μg/ml against C. violaceum 12472, P. aeruginosa PAO1, and S. marcescens MTCC97 respectively. At sub-MICs QS regulated virulence factors production and inhibited biofilms broadly (more than 50 percent). GC/MS detected the major bioactive compound benzoic acid, 3,4,5-trihydroxy-, methyl ester (61.24 %) and LC-MS detected Retronecine for the first time in A. nilotica pods. In silico, dehydroabietic acid occupied the same cavity as its antagonist in the CviR ligand binding domain. Also, betulin and epicatechin gallate interact with biofilm proteins PilY1 and PilT, preventing biofilm formation. The findings suggest that the phytochemicals of A. nilotica pod could be exploited as an anti-QS agent against Gram-negative pathogens. To discover therapeutic efficacy of standardised bioactive extract/phytochemicals must be tested under in vivo condition.