Ontology highlight
ABSTRACT: Abbreviations
M. oryzae: Magnaporthe oryzae; S. cerevisiae: Saccharomyces cerevisiae; F. oxysporum: Fusarium oxysporum; U. maydis: Ustilago maydis; Compl.: complemented strains of ?Mosnt2 expressing MoSNT2-GFP; ATG: autophagy-related; HDAC: histone deacetylase complex; Tor: target of rapamycin kinase; MTOR: mechanistic target of rapamycin kinase in mammals; MoSnt2: DNA binding SaNT domain protein in M. oryzae; MoTor: target of rapamycin kinase in M. oryzae; MoAtg8: autophagy-related protein 8 in M. oryzae; MoHos2: hda one similar protein in M. oryzae; MoeIf4G: eukaryotic translation initiation factor 4 G in M. oryzae; MoRs2: ribosomal protein S2 in M. oryzae; MoRs3: ribosomal protein S3 in M. oryzae; MoIcl1: isocitrate lyase in M. oryzae; MoSet1: histone H3K4 methyltransferase in M. oryzae; Asd4: ascus development 4; Abl1: AMP-activated protein kinase ? subunit-like protein; Tig1: TBL1-like gene required for invasive growth; Rpd3: reduced potassium dependency; KAT8: lysine (K) acetyltransferase 8; PHD: plant homeodomain; ELM2: Egl-27 and MTA1 homology 2; GFP: green fluorescent protein; YFP: yellow fluorescent protein; YFPCTF: C-terminal fragment of YFP; YFPNTF: N-terminal fragment of YFP; GST: glutathione S-transferase; bp: base pairs; DEGs: differentially expressed genes; CM: complete medium; MM-N: minimum medium minus nitrogen; CFW: calcofluor white; CR: congo red; DAPI: 4', 6-diamidino-2-phenylindole; BiFC: bimolecular fluorescence complementation; RT: reverse transcription; PCR: polymerase chain reaction; qPCR: quantitative polymerase chain reaction; RNAi: RNA interference; ChIP: chromatin immunoprecipitation.
SUBMITTER: He M
PROVIDER: S-EPMC6135590 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
Autophagy 20180831 9
Autophagy is essential for appressorium-mediated plant infection by Magnaporthe oryzae, the causal agent of rice blast disease and a major threat to global food security. The regulatory mechanism of pathogenicity-associated autophagy, however, remains largely unknown. Here, we report the identification and functional characterization of a plausible ortholog of yeast SNT2 in M. oryzae, which we term MoSNT2. Deletion mutants of MoSNT2 are compromised in autophagy homeostasis and display severe def ...[more]