Unknown

Dataset Information

0

Overexpression of the Tibetan Plateau annual wild barley (Hordeum spontaneum) HsCIPKs enhances rice tolerance to heavy metal toxicities and other abiotic stresses.


ABSTRACT:

Background

The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) signaling system plays a key regulatory role in plant stress signaling. The roles of plant-specific CIPKs, essential for CBL-CIPK functions, in the response to various abiotic stresses have been extensively studied so far. However, until now, the possible roles of the CIPKs in the plant response to heavy metal toxicities are largely unknown.

Results

In this study, we used bioinformatic and molecular strategies to isolate 12 HsCIPK genes in Tibetan Plateau annual wild barley (Hordeum spontaneum C. Koch) and subsequently identified their functional roles in the response to heavy metal toxicities. The results showed that multiple HsCIPKs were transcriptionally regulated by heavy metal toxicities (e.g., Hg, Cd, Cr, Pb, and Cu) and other abiotic stresses (e.g., salt, drought, aluminum, low and high temperature, and abscisic acid). Furthermore, the ectopic overexpression of each HsCIPK in rice (Oryza sativa L. cv Nipponbare) showed that transgenic plants of multiple HsCIPKs displayed enhanced tolerance of root growth to heavy metal toxicities (Hg, Cd, Cr, and Cu), salt and drought stresses. These results suggest that HsCIPKs are involved in the response to heavy metal toxicities and other abiotic stresses.

Conclusions

Tibetan Plateau annual wild barley HsCIPKs possess broad applications in genetically engineering of rice with tolerance to heavy metal toxicities and other abiotic stresses.

SUBMITTER: Pan W 

PROVIDER: S-EPMC6135728 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Overexpression of the Tibetan Plateau annual wild barley (Hordeum spontaneum) HsCIPKs enhances rice tolerance to heavy metal toxicities and other abiotic stresses.

Pan Weihuai W   Shen Jinqiu J   Zheng Zhongzhong Z   Yan Xu X   Shou Jianxin J   Wang Wenxiang W   Jiang Lixi L   Pan Jianwei J  

Rice (New York, N.Y.) 20180912 1


<h4>Background</h4>The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) signaling system plays a key regulatory role in plant stress signaling. The roles of plant-specific CIPKs, essential for CBL-CIPK functions, in the response to various abiotic stresses have been extensively studied so far. However, until now, the possible roles of the CIPKs in the plant response to heavy metal toxicities are largely unknown.<h4>Results</h4>In this study, we used bioinformatic and mo  ...[more]

Similar Datasets

| S-EPMC6724185 | biostudies-literature
| S-EPMC8613928 | biostudies-literature
| S-EPMC3544613 | biostudies-literature
| S-EPMC4981475 | biostudies-literature
| S-EPMC4023447 | biostudies-literature
| S-EPMC9690463 | biostudies-literature
| S-EPMC10950244 | biostudies-literature
| S-EPMC3971598 | biostudies-literature
| S-EPMC196885 | biostudies-literature
| S-EPMC4313863 | biostudies-literature