Unknown

Dataset Information

0

DNA-Directed Fluorescence Switching of Silver Clusters.


ABSTRACT: Silver clusters with ?30 atoms are molecules with diverse electronic spectra and wide-ranging emission intensities. Specific cluster chromophores form within DNA strands, and we consider a DNA scaffold that transforms a pair of silver clusters. This ~20-nucleotide strand has two components, a cluster domain (S1) that stabilizes silver clusters and a recognition site (S2) that hybridizes with complementary oligonucleotides (S2C). The single-stranded S1-S2 exclusively develops clusters with violet absorption and low emission. This conjugate hybridizes with S2C to form S1-S2:S2C, and the violet chromophore transforms to a fluorescent counterpart with ?ex ? 490 nm/?em ? 550 nm and with ~100-fold stronger emission. Our studies focus on both the S1 sequence and structure that direct this violet ? blue-green cluster transformation. From the sequence perspective, C4X sequences with X = adenine, thymine, and/or guanine favor the blue-green cluster, and the specificity of the binding site depends on three factors: the number of C4X repeats, the identity of the X nucleobase, and the number of contiguous cytosines. A systematic series of oligonucleotides identified the optimal S1 sequence C4AC4T and discerned distinct roles for the adenine, thymine, and cytosines. From the structure perspective, two factors guide the conformation of the C4AC4T sequence: hybridization with the S2C complement and coordination by the cluster adduct. Spectroscopic and chromatographic studies show that the single-stranded C4AC4T is folded by its blue-green cluster adduct. We propose a structural model in which the two C4X motifs within C4AC4T are cross-linked by the encapsulated cluster. These studies suggest that the structures of the DNA host and the cluster adduct are interdependent.

SUBMITTER: Ganguly M 

PROVIDER: S-EPMC6136663 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

DNA-Directed Fluorescence Switching of Silver Clusters.

Ganguly Mainak M   Bradsher Cara C   Goodwin Peter P   Petty Jeffrey T JT  

The journal of physical chemistry. C, Nanomaterials and interfaces 20151113 49


Silver clusters with ≲30 atoms are molecules with diverse electronic spectra and wide-ranging emission intensities. Specific cluster chromophores form within DNA strands, and we consider a DNA scaffold that transforms a pair of silver clusters. This ~20-nucleotide strand has two components, a cluster domain (S1) that stabilizes silver clusters and a recognition site (S2) that hybridizes with complementary oligonucleotides (S2C). The single-stranded S1-S2 exclusively develops clusters with violet  ...[more]

Similar Datasets

| S-EPMC6178949 | biostudies-literature
| S-EPMC6274378 | biostudies-literature
| S-EPMC9417461 | biostudies-literature
| S-EPMC8043073 | biostudies-literature
| S-EPMC4532293 | biostudies-literature
| S-EPMC4532300 | biostudies-literature
| S-EPMC6540914 | biostudies-literature
| S-EPMC2763910 | biostudies-literature
| S-EPMC3985885 | biostudies-literature
| S-EPMC5887185 | biostudies-literature