Unknown

Dataset Information

0

Bedrock geology affects foliar nutrient status but has minor influence on leaf carbon isotope discrimination across altitudinal gradients.


ABSTRACT: Carbon isotope discrimination (?13C) in plant leaves generally decreases with increasing altitude in mountains. Lower foliar ?13C at high elevation usually is associated with higher leaf mass per area (LMA) in thicker leaves. However, it is unclear if lower foliar ?13C in high-altitude plants is caused by improved photosynthetic capacity as an effect of higher nutrient, especially nitrogen, content in thicker leaves. We investigated trends of foliar ?13C in four species, each belonging to a different plant functional type (PFT), across two altitudinal gradients, each on a different bedrock type (carbonate and silicate bedrock, respectively) in a region of the southern Alps (Italy) where the foliar ?13C was not affected by water limitation. Our objective was to assess whether the altitudinal patterns of foliar ?13C in relation to leaf morphology and foliar nutrients were conditioned by indirect control of bedrock geology on soil nutrient availability. The foliar ?13C of the four species was mainly affected by LMA and, secondarily, by stomatal density (SD) but the relative importance of these foliar traits varied among species. Area-based nutrient contents had overall minor importance in controlling C discrimination. Relationships among foliar ?13C, foliar nutrient content and leaf growth rate strongly depended on soil nutrient availability varying differently across the two gradients. In the absence of water limitation, the foliar ?13C was primarily controlled by irradiance which can shape anatomical leaf traits, especially LMA and/or SD, whose relative importance in determining C isotope discrimination differed among species and/or PFT. Decreasing foliar ?13C across altitudinal gradients need not be determined by improved photosynthetic capacity deriving from higher nutrient content in thicker leaves.

SUBMITTER: Gerdol R 

PROVIDER: S-EPMC6145514 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bedrock geology affects foliar nutrient status but has minor influence on leaf carbon isotope discrimination across altitudinal gradients.

Gerdol Renato R   Iacumin Paola P   Tonin Rita R  

PloS one 20180919 9


Carbon isotope discrimination (Δ13C) in plant leaves generally decreases with increasing altitude in mountains. Lower foliar Δ13C at high elevation usually is associated with higher leaf mass per area (LMA) in thicker leaves. However, it is unclear if lower foliar Δ13C in high-altitude plants is caused by improved photosynthetic capacity as an effect of higher nutrient, especially nitrogen, content in thicker leaves. We investigated trends of foliar Δ13C in four species, each belonging to a diff  ...[more]

Similar Datasets

| S-EPMC2694612 | biostudies-literature
| S-EPMC3178403 | biostudies-literature
| S-EPMC5750908 | biostudies-other
| S-EPMC6800431 | biostudies-literature
| S-EPMC5379052 | biostudies-literature
| S-EPMC5721729 | biostudies-literature
| S-EPMC4119021 | biostudies-literature
| S-EPMC4429656 | biostudies-literature
| S-EPMC8538053 | biostudies-literature
| S-EPMC9919148 | biostudies-literature