Unknown

Dataset Information

0

HIGA: A Running History Information Guided Genetic Algorithm for Protein-Ligand Docking.


ABSTRACT: Protein-ligand docking is an essential part of computer-aided drug design, and it identifies the binding patterns of proteins and ligands by computer simulation. Though Lamarckian genetic algorithm (LGA) has demonstrated excellent performance in terms of protein-ligand docking problems, it can not memorize the history information that it has accessed, rendering it effort-consuming to discover some promising solutions. This article illustrates a novel optimization algorithm (HIGA), which is based on LGA for solving the protein-ligand docking problems with an aim to overcome the drawback mentioned above. A running history information guided model, which includes CE crossover, ED mutation, and BSP tree, is applied in the method. The novel algorithm is more efficient to find the lowest energy of protein-ligand docking. We evaluate the performance of HIGA in comparison with GA, LGA, EDGA, CEPGA, SODOCK, and ABC, the results of which indicate that HIGA outperforms other search algorithms.

SUBMITTER: Guan B 

PROVIDER: S-EPMC6149887 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

HIGA: A Running History Information Guided Genetic Algorithm for Protein-Ligand Docking.

Guan Boxin B   Zhang Changsheng C   Zhao Yuhai Y  

Molecules (Basel, Switzerland) 20171215 12


Protein-ligand docking is an essential part of computer-aided drug design, and it identifies the binding patterns of proteins and ligands by computer simulation. Though Lamarckian genetic algorithm (LGA) has demonstrated excellent performance in terms of protein-ligand docking problems, it can not memorize the history information that it has accessed, rendering it effort-consuming to discover some promising solutions. This article illustrates a novel optimization algorithm (HIGA), which is based  ...[more]

Similar Datasets

| S-EPMC4931765 | biostudies-literature
| S-EPMC5597564 | biostudies-literature
| S-EPMC5979554 | biostudies-literature
| S-EPMC3591660 | biostudies-literature
| S-EPMC10201035 | biostudies-literature
| S-EPMC7025805 | biostudies-literature
| S-EPMC7471403 | biostudies-literature
| S-EPMC5367798 | biostudies-literature
| S-EPMC3504801 | biostudies-literature
| S-EPMC9719503 | biostudies-literature