Unknown

Dataset Information

0

Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD.


ABSTRACT: Previous studies have shown that gut-microbiome is associated with nonalcoholic fatty liver disease (NAFLD). We aimed to examine if serum metabolites, especially those derived from the gut-microbiome, have a shared gene-effect with hepatic steatosis and fibrosis. This is a cross-sectional analysis of a prospective discovery cohort including 156 well-characterized twins and families with untargeted metabolome profiling assessment. Hepatic steatosis was assessed using magnetic-resonance-imaging proton-density-fat-fraction (MRI-PDFF) and fibrosis using MR-elastography (MRE). A twin additive genetics and unique environment effects (AE) model was used to estimate the shared gene-effect between metabolites and hepatic steatosis and fibrosis. The findings were validated in an independent prospective validation cohort of 156 participants with biopsy-proven NAFLD including shotgun metagenomics sequencing assessment in a subgroup of the cohort. In the discovery cohort, 56 metabolites including 6 microbial metabolites had a significant shared gene-effect with both hepatic steatosis and fibrosis after adjustment for age, sex and ethnicity. In the validation cohort, 6 metabolites were associated with advanced fibrosis. Among them, only one microbial metabolite, 3-(4-hydroxyphenyl)lactate, remained consistent and statistically significantly associated with liver fibrosis in the discovery and validation cohort (fold-change of higher-MRE versus lower-MRE: 1.78, P < 0.001 and of advanced versus no advanced fibrosis: 1.26, P = 0.037, respectively). The share genetic determination of 3-(4-hydroxyphenyl)lactate with hepatic steatosis was RG :0.57,95%CI:0.27-0.80, P < 0.001 and with fibrosis was RG :0.54,95%CI:0.036-1, P = 0.036. Pathway reconstruction linked 3-(4-hydroxyphenyl)lactate to several human gut-microbiome species. In the validation cohort, 3-(4-hydroxyphenyl)lactate was significantly correlated with the abundance of several gut-microbiome species, belonging only to Firmicutes, Bacteroidetes and Proteobacteria phyla, previously reported as associated with advanced fibrosis. Conclusion: This proof of concept study provides evidence of a link between the gut-microbiome and 3-(4-hydroxyphenyl)lactate that shares gene-effect with hepatic steatosis and fibrosis. (Hepatology 2018).

SUBMITTER: Caussy C 

PROVIDER: S-EPMC6151296 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD.

Caussy Cyrielle C   Hsu Cynthia C   Lo Min-Tzu MT   Liu Amy A   Bettencourt Ricki R   Ajmera Veeral H VH   Bassirian Shirin S   Hooker Jonathan J   Sy Ethan E   Richards Lisa L   Schork Nicholas N   Schnabl Bernd B   Brenner David A DA   Sirlin Claude B CB   Chen Chi-Hua CH   Loomba Rohit R  

Hepatology (Baltimore, Md.) 20180520 3


Previous studies have shown that gut-microbiome is associated with nonalcoholic fatty liver disease (NAFLD). We aimed to examine if serum metabolites, especially those derived from the gut-microbiome, have a shared gene-effect with hepatic steatosis and fibrosis. This is a cross-sectional analysis of a prospective discovery cohort including 156 well-characterized twins and families with untargeted metabolome profiling assessment. Hepatic steatosis was assessed using magnetic-resonance-imaging pr  ...[more]

Similar Datasets

| S-EPMC9746350 | biostudies-literature
| S-EPMC8792949 | biostudies-literature
| S-EPMC5090982 | biostudies-literature
| S-EPMC9860326 | biostudies-literature
2022-11-30 | GSE188967 | GEO
| S-EPMC8914291 | biostudies-literature
| S-EPMC8406289 | biostudies-literature
| S-EPMC8016312 | biostudies-literature
| S-EPMC9746351 | biostudies-literature
| S-EPMC7536225 | biostudies-literature