Unknown

Dataset Information

0

Partial agonist activity of α1-adrenergic receptor antagonists for chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3.


ABSTRACT: We observed in PRESTO-Tango β-arrestin recruitment assays that the α1-adrenergic receptor (AR) antagonist prazosin activates chemokine (C-X-C motif) receptor (CXCR)4. This prompted us to further examine this unexpected pharmacological behavior. We screened a panel of 14 α1/2- and β1/2/3-AR antagonists for CXCR4 and atypical chemokine receptor (ACKR)3 agonist activity in PRESTO-Tango assays against the cognate agonist CXCL12. We observed that multiple α1-AR antagonists activate CXCR4 (CXCL12 = prazosin = cyclazosin > doxazosin) and ACKR3 (CXCL12 = prazosin = cyclazosin > alfuzosin = doxazosin = phentolamine > terazosin = silodosin = tamsulosin). The two strongest CXCR4/ACKR3 activators, prazosin and cyclazosin, were selected for a more detailed evaluation. We found that the drugs dose-dependently activate both receptors in β-arrestin recruitment assays, stimulate ERK1/2 phosphorylation in HEK293 cells overexpressing each receptor, and that their effects on CXCR4 could be inhibited with AMD3100. Both α1-AR antagonists induced significant chemical shift changes in the 1H-13C-heteronuclear single quantum correlation spectrum of CXCR4 and ACKR3 in membranes, suggesting receptor binding. Furthermore, prazosin and cyclazosin induced internalization of endogenous CXCR4/ACKR3 in human vascular smooth muscle cells (hVSMC). While these drugs did not in induce chemotaxis in hVSMC, they inhibited CXCL12-induced chemotaxis with high efficacy and potency (IC50: prazosin-4.5 nM, cyclazosin 11.6 pM). Our findings reveal unexpected pharmacological properties of prazosin, cyclazosin, and likely other α1-AR antagonists. The results of the present study imply that prazosin and cyclazosin are biased or partial CXCR4/ACKR3 agonists, which function as potent CXCL12 antagonists. Our findings could provide a mechanistic basis for previously observed anti-cancer properties of α1-AR antagonists and support the concept that prazosin could be re-purposed for the treatment of disease processes in which CXCR4 and ACKR3 are thought to play significant pathophysiological roles, such as cancer metastases or various autoimmune pathologies.

SUBMITTER: Gao X 

PROVIDER: S-EPMC6152952 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4386352 | biostudies-literature
| S-EPMC4212013 | biostudies-literature
| S-EPMC8159680 | biostudies-literature
| S-EPMC5586474 | biostudies-literature
| S-EPMC3023143 | biostudies-literature
2017-05-22 | GSE86349 | GEO
| S-EPMC5079574 | biostudies-literature
| S-EPMC3589095 | biostudies-literature
| PRJEB23797 | ENA
| S-EPMC6176105 | biostudies-literature