Unknown

Dataset Information

0

In-field determination of soil ion content using a handheld device and screen-printed solid-state ion-selective electrodes.


ABSTRACT: Small-holding farmers in the developing world suffer from sub-optimal crop yields because they lack a soil diagnostic system that is affordable, usable, and actionable. This paper details the fabrication and characterization of an integrated point-of-use soil-testing system, comprised of disposable ion-selective electrode strips and a handheld electrochemical reader. Together, the strips and reader transduce soil ion concentrations into to an alphanumeric output that can be communicated via text message to a central service provider offering immediate, customized fertilizer advisory. The solid-state ion-selective electrode (SS-ISE) strips employ a two-electrode design with screen-printable carbon nanotube ink serving as the electrical contacts for the working and reference electrodes. The working electrode comprises a plasticizer-free butyl acrylate ion-selective membrane (ISM), doped with an ion-selective ionophore and lipophilic salt. Meanwhile, the reference electrode includes a screen-printed silver-silver chloride ink and a polyvinyl-butyral membrane, which is doped with sodium chloride for stable reference potentials. As a proof of concept, potassium-selective electrodes are studied, given potassium's essential role in plant growth and reproduction. The ISE-based system is reproducibly manufactured to yield a Nernstian response with a sub-micromolar detection limit (pK+ of 5.18 ± 0.08) and near-Nernstian sensitivity (61 mV/decade) in the presence of a 0.02 M strontium chloride extraction solution. Analysis of soil samples using the printed electrodes and reader yielded a correlation coefficient of ?2 = 0.89 with respect to values measured via inductively coupled plasma atomic emission spectroscopy (ICP-AES). The reliable performance of this system is encouraging toward its deployment for soil nutrient management in resource-limited environments.

SUBMITTER: Rosenberg R 

PROVIDER: S-EPMC6155443 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

In-field determination of soil ion content using a handheld device and screen-printed solid-state ion-selective electrodes.

Rosenberg Ron R   Bono Michael S MS   Braganza Soumya S   Vaishnav Chintan C   Karnik Rohit R   Hart A John AJ  

PloS one 20180925 9


Small-holding farmers in the developing world suffer from sub-optimal crop yields because they lack a soil diagnostic system that is affordable, usable, and actionable. This paper details the fabrication and characterization of an integrated point-of-use soil-testing system, comprised of disposable ion-selective electrode strips and a handheld electrochemical reader. Together, the strips and reader transduce soil ion concentrations into to an alphanumeric output that can be communicated via text  ...[more]

Similar Datasets

| S-EPMC6395463 | biostudies-literature
| S-EPMC8562869 | biostudies-literature
| S-EPMC6394810 | biostudies-literature
| S-EPMC7503887 | biostudies-literature
| S-EPMC10136782 | biostudies-literature
| S-EPMC6983226 | biostudies-literature
| S-EPMC7236603 | biostudies-literature
| S-EPMC10059588 | biostudies-literature
| S-EPMC6316885 | biostudies-literature
| S-EPMC7146522 | biostudies-literature