Osteoporosis and Hip Fracture Risk From Routine Computed Tomography Scans: The Fracture, Osteoporosis, and CT Utilization Study (FOCUS).
Ontology highlight
ABSTRACT: Methods now exist for analyzing previously taken clinical computed tomography (CT) scans to measure a dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) at the hip and a finite element analysis-derived femoral strength. We assessed the efficacy of this "biomechanical CT" (BCT) approach for identifying patients at high risk of incident hip fracture in a large clinical setting. Using a case-cohort design sampled from 111,694 women and men aged 65 or older who had a prior hip CT scan, a DXA within 3 years of the CT, and no prior hip fracture, we compared those with subsequent hip fracture (n?=?1959) with randomly selected sex-stratified controls (n?=?1979) and analyzed their CT scans blinded to all other data. We found that the age-, race-, and body mass index (BMI)-adjusted hazard ratio (HR; per standard deviation) for femoral strength was significant before (women: HR?=?2.8, 95% confidence interval [CI] 2.2-3.5; men: 2.8, 2.1-3.7) and after adjusting also for the (lowest) hip BMD T-score by BCT (women: 2.1, 1.4-3.2; men: 2.7, 1.6-4.6). The hazard ratio for the hip BMD T-score was similar between BCT and DXA for both sexes (women: 2.1, 1.8-2.5 BCT versus 2.1, 1.7-2.5 DXA; men: 2.8, 2.1-3.8 BCT versus 2.5, 2.0-3.2 DXA) and was higher than for the (lowest) spine/hip BMD T-score by DXA (women: 1.6, 1.4-1.9; men: 2.1, 1.6-2.7). Compared with the latter as a clinical-practice reference and using both femoral strength and the hip BMD T-score from BCT, sensitivity for predicting hip fracture was higher for BCT (women: 0.66 versus 0.59; men: 0.56 versus 0.48), with comparable respective specificity (women: 0.66 versus 0.67; men: 0.76 versus 0.78). We conclude that BCT analysis of previously acquired routine abdominal or pelvic CT scans is at least as effective as DXA testing for identifying patients at high risk of hip fracture. © 2018 American Society for Bone and Mineral Research.
SUBMITTER: Adams AL
PROVIDER: S-EPMC6155990 | biostudies-literature | 2018 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA