Ontology highlight
ABSTRACT: Objective
The metabolic role of d-serine, a non-proteinogenic NMDA receptor co-agonist, is poorly understood. Conversely, inhibition of pancreatic NMDA receptors as well as loss of the d-serine producing enzyme serine racemase have been shown to modulate insulin secretion. Thus, we aim to study the impact of chronic and acute d-serine supplementation on insulin secretion and other parameters of glucose homeostasis.Methods
We apply MALDI FT-ICR mass spectrometry imaging, NMR based metabolomics, 16s rRNA gene sequencing of gut microbiota in combination with a detailed physiological characterization to unravel the metabolic action of d-serine in mice acutely and chronically treated with 1% d-serine in drinking water in combination with either chow or high fat diet feeding. Moreover, we identify SNPs in SRR, the enzyme converting L-to d-serine and two subunits of the NMDA receptor to associate with insulin secretion in humans, based on the analysis of 2760 non-diabetic Caucasian individuals.Results
We show that chronic elevation of d-serine results in reduced high fat diet intake. In addition, d-serine leads to diet-independent hyperglycemia due to blunted insulin secretion from pancreatic beta cells. Inhibition of alpha 2-adrenergic receptors rapidly restores glycemia and glucose tolerance in d-serine supplemented mice. Moreover, we show that single nucleotide polymorphisms (SNPs) in SRR as well as in individual NMDAR subunits are associated with insulin secretion in humans.Conclusion
Thus, we identify a novel role of d-serine in regulating systemic glucose metabolism through modulating insulin secretion.
SUBMITTER: Suwandhi L
PROVIDER: S-EPMC6157639 | biostudies-literature | 2018 Oct
REPOSITORIES: biostudies-literature
Suwandhi Lisa L Hausmann Simone S Braun Alexander A Gruber Tim T Heinzmann Silke S SS Gálvez Eric J C EJC Buck Achim A Legutko Beata B Israel Andreas A Feuchtinger Annette A Haythorne Elizabeth E Staiger Harald H Heni Martin M Häring Hans-Ulrich HU Schmitt-Kopplin Philippe P Walch Axel A Cáceres Cristina García CG Tschöp Matthias H MH Rutter Guy A GA Strowig Till T Elsner Martin M Ussar Siegfried S
Molecular metabolism 20180725
<h4>Objective</h4>The metabolic role of d-serine, a non-proteinogenic NMDA receptor co-agonist, is poorly understood. Conversely, inhibition of pancreatic NMDA receptors as well as loss of the d-serine producing enzyme serine racemase have been shown to modulate insulin secretion. Thus, we aim to study the impact of chronic and acute d-serine supplementation on insulin secretion and other parameters of glucose homeostasis.<h4>Methods</h4>We apply MALDI FT-ICR mass spectrometry imaging, NMR based ...[more]