Unknown

Dataset Information

0

Systems biology approach reveals a link between mTORC1 and G2/M DNA damage checkpoint recovery.


ABSTRACT: Checkpoint recovery, the process that checkpoint-arrested cells with normal DNA repair capacity resume cell cycle progression, is essential for genome stability. However, the signaling network of the process has not been clearly defined. Here, we combine functional proteomics, mathematical modeling, and molecular biology to identify mTORC1, the nutrient signaling integrator, as the determinant for G2/M checkpoint recovery. Inhibition of the mTORC1 pathway delays mitotic entry after DNA damage through KDM4B-mediated regulation of CCNB1 and PLK1 transcription. Cells with hyper-mTORC1 activity caused by TSC2 depletion exhibit accelerated G2/M checkpoint recovery. Those Tsc2-null cells are sensitive to WEE1 inhibition in vitro and in vivo by driving unscheduled mitotic entry and inducing mitotic catastrophe. These results reveal that mTORC1 functions as a mediator between nutrition availability sensing and cell fate determination after DNA damage, suggesting that checkpoint inhibitors may be used to treat mTORC1-hyperactivated tumors such as those associated with tuberous sclerosis complex.

SUBMITTER: Hsieh HJ 

PROVIDER: S-EPMC6162282 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Systems biology approach reveals a link between mTORC1 and G2/M DNA damage checkpoint recovery.

Hsieh Hui-Ju HJ   Zhang Wei W   Lin Shu-Hong SH   Yang Wen-Hao WH   Wang Jun-Zhong JZ   Shen Jianfeng J   Zhang Yiran Y   Lu Yiling Y   Wang Hua H   Yu Jane J   Mills Gordon B GB   Peng Guang G  

Nature communications 20180928 1


Checkpoint recovery, the process that checkpoint-arrested cells with normal DNA repair capacity resume cell cycle progression, is essential for genome stability. However, the signaling network of the process has not been clearly defined. Here, we combine functional proteomics, mathematical modeling, and molecular biology to identify mTORC1, the nutrient signaling integrator, as the determinant for G2/M checkpoint recovery. Inhibition of the mTORC1 pathway delays mitotic entry after DNA damage th  ...[more]

Similar Datasets

2013-04-29 | PXD000222 | Pride
2012-04-25 | GSE37552 | GEO
2012-04-24 | E-GEOD-37552 | biostudies-arrayexpress
| S-EPMC3201854 | biostudies-literature
| S-EPMC3431263 | biostudies-literature
| S-EPMC6944915 | biostudies-literature
| S-EPMC3654547 | biostudies-literature
2020-08-25 | MSV000086016 | MassIVE
2014-08-11 | E-GEOD-56099 | biostudies-arrayexpress
2014-08-11 | GSE56099 | GEO