Unknown

Dataset Information

0

MiRNA-205 Nanoformulation Sensitizes Prostate Cancer Cells to Chemotherapy.


ABSTRACT: The therapeutic application of microRNA(s) in the field of cancer has generated significant attention in research. Previous studies have shown that miR-205 negatively regulates prostate cancer cell proliferation, metastasis, and drug resistance. However, the delivery of miR-205 is an unmet clinical need. Thus, the development of a viable nanoparticle platform to deliver miR-205 is highly sought. A novel magnetic nanoparticle (MNP)-based nanoplatform composed of an iron oxide core with poly(ethyleneimine)-poly(ethylene glycol) layer(s) was developed. An optimized nanoplatform composition was confirmed by examining the binding profiles of MNPs with miR-205 using agarose gel and fluorescence methods. The novel formulation was applied to prostate cancer cells for evaluating cellular uptake, miR-205 delivery, and anticancer, antimetastasis, and chemosensitization potentials against docetaxel treatment. The improved uptake and efficacy of formulations were studied with confocal imaging, flow cytometry, proliferation, clonogenicity, Western blot, q-RT-PCR, and chemosensitization assays. Our findings demonstrated that the miR-205 nanoplatform induces significant apoptosis and enhancing chemotherapeutic effects in prostate cancer cells. Overall, these study results provide a strong proof-of-concept for a novel nonviral-based nanoparticle protocol for effective microRNA delivery to prostate cancer cells.

SUBMITTER: Nagesh PKB 

PROVIDER: S-EPMC6162422 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications


The therapeutic application of microRNA(s) in the field of cancer has generated significant attention in research. Previous studies have shown that miR-205 negatively regulates prostate cancer cell proliferation, metastasis, and drug resistance. However, the delivery of miR-205 is an unmet clinical need. Thus, the development of a viable nanoparticle platform to deliver miR-205 is highly sought. A novel magnetic nanoparticle (MNP)-based nanoplatform composed of an iron oxide core with poly(ethyl  ...[more]

Similar Datasets

| S-EPMC6089215 | biostudies-literature
| S-EPMC3004480 | biostudies-literature
| S-EPMC7646560 | biostudies-literature
| S-EPMC4603999 | biostudies-literature
| S-EPMC6130726 | biostudies-literature
| S-EPMC8065910 | biostudies-literature
| S-EPMC3174735 | biostudies-literature
| S-EPMC6251953 | biostudies-literature
| S-EPMC3336076 | biostudies-literature
| S-EPMC6300616 | biostudies-literature