Unknown

Dataset Information

0

Sulfate-Reducing Naphthalene Degraders Are Picky Eaters.


ABSTRACT: Polycyclic aromatic hydrocarbons (PAHs) are common organic contaminants found in anoxic environments. The capacity for PAH biodegradation in unimpacted environments, however, has been understudied. Here we investigate the enrichment, selection, and sustainability of a microbial community from a pristine environment on naphthalene as the only amended carbon source. Pristine coastal sediments were obtained from the Jacques Cousteau National Estuarine Research Reserve in Tuckerton, New Jersey, an ecological reserve which has no direct input or source of hydrocarbons. After an initial exposure to naphthalene, primary anaerobic transfer cultures completely degraded 500 µM naphthalene within 139 days. Subsequent transfer cultures mineralized naphthalene within 21 days with stoichiometric sulfate loss. Enriched cultures efficiently utilized only naphthalene and 2-methylnaphthalene from the hydrocarbon mixtures in crude oil. To determine the microorganisms responsible for naphthalene degradation, stable isotope probing was utilized on cultures amended with fully labeled 13C-naphthalene as substrate. Three organisms were found to unambiguously synthesize 13C-DNA from 13C-naphthalene within 7 days. Phylogenetic analysis revealed that 16S rRNA genes from two of these organisms are closely related to the known naphthalene degrading isolates NaphS2 and NaphS3 from PAH-contaminated sites. A third 16S rRNA gene was only distantly related to its closest relative and may represent a novel naphthalene degrading microbe from this environment.

SUBMITTER: Wolfson SJ 

PROVIDER: S-EPMC6163709 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sulfate-Reducing Naphthalene Degraders Are Picky Eaters.

Wolfson Sarah J SJ   Porter Abigail W AW   Kerkhof Lee J LJ   McGuinness Lora M LM   Prince Roger C RC   Young Lily Y LY  

Microorganisms 20180625 3


Polycyclic aromatic hydrocarbons (PAHs) are common organic contaminants found in anoxic environments. The capacity for PAH biodegradation in unimpacted environments, however, has been understudied. Here we investigate the enrichment, selection, and sustainability of a microbial community from a pristine environment on naphthalene as the only amended carbon source. Pristine coastal sediments were obtained from the Jacques Cousteau National Estuarine Research Reserve in Tuckerton, New Jersey, an e  ...[more]

Similar Datasets

| S-EPMC6521015 | biostudies-literature
| S-EPMC6215483 | biostudies-literature
| S-EPMC4184016 | biostudies-literature
| S-EPMC5908245 | biostudies-literature
| PRJNA421399 | ENA
| PRJNA903667 | ENA
| S-EPMC10293356 | biostudies-literature
| PRJNA824301 | ENA
| PRJDB18122 | ENA
| PRJEB37148 | ENA