Unknown

Dataset Information

0

Correlation between Electrical Transport and Nanoscale Strain in InAs/In0.6Ga0.4As Core-Shell Nanowires.


ABSTRACT: Free-standing semiconductor nanowires constitute an ideal material system for the direct manipulation of electrical and optical properties by strain engineering. In this study, we present a direct quantitative correlation between electrical conductivity and nanoscale lattice strain of individual InAs nanowires passivated with a thin epitaxial In0.6Ga0.4As shell. With an in situ electron microscopy electromechanical testing technique, we show that the piezoresistive response of the nanowires is greatly enhanced compared to bulk InAs, and that uniaxial elastic strain leads to increased conductivity, which can be explained by a strain-induced reduction in the band gap. In addition, we observe inhomogeneity in strain distribution, which could have a reverse effect on the conductivity by increasing the scattering of charge carriers. These results provide a direct correlation of nanoscale mechanical strain and electrical transport properties in free-standing nanostructures.

SUBMITTER: Zeng L 

PROVIDER: S-EPMC6166997 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Correlation between Electrical Transport and Nanoscale Strain in InAs/In<sub>0.6</sub>Ga<sub>0.4</sub>As Core-Shell Nanowires.

Zeng Lunjie L   Gammer Christoph C   Ozdol Burak B   Nordqvist Thomas T   Nygård Jesper J   Krogstrup Peter P   Minor Andrew M AM   Jäger Wolfgang W   Olsson Eva E  

Nano letters 20180730 8


Free-standing semiconductor nanowires constitute an ideal material system for the direct manipulation of electrical and optical properties by strain engineering. In this study, we present a direct quantitative correlation between electrical conductivity and nanoscale lattice strain of individual InAs nanowires passivated with a thin epitaxial In<sub>0.6</sub>Ga<sub>0.4</sub>As shell. With an in situ electron microscopy electromechanical testing technique, we show that the piezoresistive response  ...[more]

Similar Datasets

| S-EPMC10910494 | biostudies-literature
| S-EPMC11229085 | biostudies-literature
| S-EPMC4835758 | biostudies-literature
| S-EPMC2894104 | biostudies-literature
| S-EPMC10161083 | biostudies-literature
| S-EPMC10835664 | biostudies-literature
| S-EPMC9832435 | biostudies-literature
| S-EPMC6158676 | biostudies-literature
| S-EPMC8517978 | biostudies-literature
| S-EPMC6626086 | biostudies-other