ABSTRACT: BACKGROUND:Alcohol use disorder (AUD) is known to have adverse effects on brain structure and function. Multimodal assessments investigating volumetric, diffusion, and cognitive characteristics may facilitate understanding of the consequences of long-term alcohol use on brain circuitry, their structural impairment patterns, and their impact on cognitive function in AUD. METHODS:Voxel- and surface-based volumetric estimations, diffusion tensor imaging (DTI), and neuropsychological tests were performed on 60 individuals: 30 abstinent individuals with AUD (DSM-IV) and 30 healthy controls. Group differences in the volumes of cortical and subcortical regions, fractional anisotropy (FA), axial and radial diffusivities (AD and RD, respectively), and performance on neuropsychological tests were analyzed, and the relationship among significantly different measures was assessed using canonical correlation. RESULTS:AUD participants had significantly smaller volumes in left pars orbitalis, right medial orbitofrontal, right caudal middle frontal, and bilateral hippocampal regions, lower FA in 9 white matter (WM) regions, and higher FA in left thalamus, compared to controls. In AUD, lower FA in 6 of 9 WM regions was due to higher RD and due to lower AD in the left external capsule. AUD participants scored lower on problem-solving ability, visuospatial memory span, and working memory. Positive correlations of prefrontal cortical, left hippocampal volumes, and FA in 4 WM regions with visuospatial memory performance and negative correlation with lower problem-solving ability were observed. Significant positive correlation between age and FA was observed in bilateral putamen. CONCLUSIONS:Findings showed specific structural brain abnormalities to be associated with visuospatial memory and problem-solving ability-related impairments observed in AUD. Higher RD in 6 WM regions suggests demyelination, and lower AD in left external capsule suggests axonal loss in AUD. The positive correlation between FA and age in bilateral putamen may reflect accumulation of iron depositions with increasing age.