Unknown

Dataset Information

0

Modeling Heterogeneity in Healthcare Utilization Using Massive Medical Claims Data.


ABSTRACT: We introduce a modeling approach for characterizing heterogeneity in healthcare utilization using massive medical claims data. We first translate the medical claims observed for a large study population and across five years into individual-level discrete events of care called utilization sequences. We model the utilization sequences using an exponential proportional hazards mixture model to capture heterogeneous behaviors in patients' healthcare utilization. The objective is to cluster patients according to their longitudinal utilization behaviors and to determine the main drivers of variation in healthcare utilization while controlling for the demographic, geographic, and health characteristics of the patients. Due to the computational infeasibility of fitting a parametric proportional hazards model for high-dimensional, large sample size data we use an iterative one-step procedure to estimate the model parameters and impute the cluster membership. The approach is used to draw inferences on utilization behaviors of children in the Medicaid system with persistent asthma across six states. We conclude with policy implications for targeted interventions to improve adherence to recommended care practices for pediatric asthma.

SUBMITTER: Hilton RP 

PROVIDER: S-EPMC6167939 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modeling Heterogeneity in Healthcare Utilization Using Massive Medical Claims Data.

Hilton Ross P RP   Zheng Yuchen Y   Serban Nicoleta N  

Journal of the American Statistical Association 20170626 521


We introduce a modeling approach for characterizing heterogeneity in healthcare utilization using massive medical claims data. We first translate the medical claims observed for a large study population and across five years into individual-level discrete events of care called <i>utilization sequences</i>. We model the utilization sequences using an exponential proportional hazards mixture model to capture heterogeneous behaviors in patients' healthcare utilization. The objective is to cluster p  ...[more]

Similar Datasets

| S-EPMC7021730 | biostudies-literature
| S-EPMC8867662 | biostudies-literature
| S-EPMC3965743 | biostudies-literature
| S-EPMC9283612 | biostudies-literature
| S-EPMC8408067 | biostudies-literature
| S-EPMC6737189 | biostudies-literature
| S-EPMC6863234 | biostudies-literature
| S-EPMC4693852 | biostudies-literature
| S-EPMC6240503 | biostudies-literature
| S-EPMC9976763 | biostudies-literature