Unknown

Dataset Information

0

Disc-type hyaline cartilage reconstruction using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes and maintenance of its shape and phenotype after transplantation.


ABSTRACT: In this study, we developed the disc-type bio-cartilage reconstruction strategies for transplantable hyaline cartilage for reconstructive surgery using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes. We compared chondrogenesis efficiency between different chondrogenic-induction methods such as micromass culture, pellet culture, and 3D-cell sheet culture. Among them, the 3D-cell sheet culture resulted in the best chondrogenesis with the disc-type bio-cartilage (>12 mm diameter in size) in vitro, but sometimes spontaneous curling and contraction of 3D-cell sheet culture resulted in the formation of bead-type cartilage, which was prevented by type I collagen coating or by culturing on amniotic membrane. Previously, it was reported that tissue-engineered cartilage reconstructed in vitro does not maintain its cartilage phenotype after transplantation but tends to transform to other tissue type such as bone or connective tissue. However, the disc-type bio-cartilage of 3D-cell sheet culture maintained its hyaline cartilage phenotype even after exposure to the osteogenic-induction condition in vitro for 3 weeks or after the transplantation for 4 weeks in mouse subcutaneous. Collectively, the disc-type bio-cartilage with 12 mm diameter can be reproducibly reconstructed by the 3D-cell sheet culture, whose hyaline cartilage phenotype and shape can be maintained under the osteogenic-induction condition as well as after the transplantation. This disc-type bio-cartilage can be proposed for the application to reconstructive surgery and repair of disc-type cartilage such as mandibular cartilage and digits.

Electronic supplementary material

Supplementary material is available for this article at 10.1007/s13770-016-9065-6 and is accessible for authorized users.

SUBMITTER: Jang J 

PROVIDER: S-EPMC6171548 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disc-type hyaline cartilage reconstruction using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes and maintenance of its shape and phenotype after transplantation.

Jang Jeongho J   Lee Jungsun J   Lee Eunkyung E   Lee EunAh E   Son Youngsook Y  

Tissue engineering and regenerative medicine 20160805 4


In this study, we developed the disc-type bio-cartilage reconstruction strategies for transplantable hyaline cartilage for reconstructive surgery using 3D-cell sheet culture of human bone marrow stromal cells and human costal chondrocytes. We compared chondrogenesis efficiency between different chondrogenic-induction methods such as micromass culture, pellet culture, and 3D-cell sheet culture. Among them, the 3D-cell sheet culture resulted in the best chondrogenesis with the disc-type bio-cartil  ...[more]

Similar Datasets

| S-EPMC3460363 | biostudies-literature
| S-EPMC8711272 | biostudies-literature
| S-EPMC7995488 | biostudies-literature
| S-EPMC9801297 | biostudies-literature
| S-EPMC4981366 | biostudies-literature
| S-EPMC4313417 | biostudies-literature
| S-EPMC6525579 | biostudies-literature
| S-EPMC8557148 | biostudies-literature
| S-EPMC6220221 | biostudies-literature
| S-EPMC5493350 | biostudies-literature