Proteome-scale relationships between local amino acid composition and protein fates and functions.
Ontology highlight
ABSTRACT: Proteins with low-complexity domains continue to emerge as key players in both normal and pathological cellular processes. Although low-complexity domains are often grouped into a single class, individual low-complexity domains can differ substantially with respect to amino acid composition. These differences may strongly influence the physical properties, cellular regulation, and molecular functions of low-complexity domains. Therefore, we developed a bioinformatic approach to explore relationships between amino acid composition, protein metabolism, and protein function. We find that local compositional enrichment within protein sequences is associated with differences in translation efficiency, abundance, half-life, protein-protein interaction promiscuity, subcellular localization, and molecular functions of proteins on a proteome-wide scale. However, local enrichment of related amino acids is sometimes associated with opposite effects on protein regulation and function, highlighting the importance of distinguishing between different types of low-complexity domains. Furthermore, many of these effects are discernible at amino acid compositions below those required for classification as low-complexity or statistically-biased by traditional methods and in the absence of homopolymeric amino acid repeats, indicating that thresholds employed by classical methods may not reflect biologically relevant criteria. Application of our analyses to composition-driven processes, such as the formation of membraneless organelles, reveals distinct composition profiles even for closely related organelles. Collectively, these results provide a unique perspective and detailed insights into relationships between amino acid composition, protein metabolism, and protein functions.
SUBMITTER: Cascarina SM
PROVIDER: S-EPMC6171957 | biostudies-literature | 2018 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA