Unknown

Dataset Information

0

Substructure imaging of heterogeneous nanomaterials with enhanced refractive index contrast by using a functionalized tip in photoinduced force microscopy.


ABSTRACT: The opto-mechanical force response from light-illuminated nanoscale materials has been exploited in many tip-based imaging applications to characterize various heterogeneous nanostructures. Such a force can have two origins: thermal expansion and induced dipoles. The thermal expansion reflects the absorption of the material, which enables one to chemically characterize a material at the absorption resonance. The induced dipole interaction reflects the local refractive indices of the material underneath the tip, which is useful to characterize a material in the spectral region where no absorption resonance occurs, as in the infrared (IR)-inactive region. Unfortunately, the dipole force is relatively small, and the contrast is rarely discernible for most organic materials and biomaterials, which only show a small difference in refractive indices for their components. In this letter, we demonstrate that refractive index contrast can be greatly enhanced with the assistance of a functionalized tip. With the enhanced contrast, we can visualize the substructure of heterogeneous biomaterials, such as a polyacrylonitrile-nanocrystalline cellulose (PAN-NCC) nanofiber. From substructural visualization, we address the issue of the tensile strength of PAN-NCC fibers fabricated by several different mixing methods. Our understanding from the present study will open up a new opportunity to provide enhanced sensitivity for substructure mapping of nanobiomaterials, as well as local field mapping of photonic devices, such as surface polaritons on semiconductors, metals and van der Waals materials.

SUBMITTER: Jahng J 

PROVIDER: S-EPMC6177416 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Substructure imaging of heterogeneous nanomaterials with enhanced refractive index contrast by using a functionalized tip in photoinduced force microscopy.

Jahng Junghoon J   Yang Heejae H   Lee Eun Seong ES  

Light, science & applications 20181010


The opto-mechanical force response from light-illuminated nanoscale materials has been exploited in many tip-based imaging applications to characterize various heterogeneous nanostructures. Such a force can have two origins: thermal expansion and induced dipoles. The thermal expansion reflects the absorption of the material, which enables one to chemically characterize a material at the absorption resonance. The induced dipole interaction reflects the local refractive indices of the material und  ...[more]

Similar Datasets

| S-EPMC4820382 | biostudies-literature
| S-EPMC7798353 | biostudies-literature
| S-EPMC6936718 | biostudies-literature
| S-EPMC7445177 | biostudies-literature
| S-EPMC5606987 | biostudies-literature
| S-EPMC7641199 | biostudies-literature
| S-EPMC10795473 | biostudies-literature
| S-EPMC5098966 | biostudies-literature
| S-EPMC7466456 | biostudies-literature
| S-EPMC7308609 | biostudies-literature