Project description:BackgroundAnnual lung cancer screening (LCS) with low-dose chest computed tomography in older current and former smokers (ie, eligible adults) has been recommended since 2013. Uptake has been slow and variable across the United States. We estimated the LCS rate and growth at the national and state level between 2016 and 2018.MethodsThe American College of Radiology's Lung Cancer Screening Registry was used to capture screening events. Population-based surveys, the US Census, and cancer registry data were used to estimate the number of eligible adults and lung cancer mortality (ie, burden). Lung cancer screening rates (SRs) in eligible adults and screening rate ratios with 95% confidence intervals (CI) were used to measure changes by state and year.ResultsNationally, the SR was steady between 2016 (3.3%, 95% CI = 3.3% to 3.7%) and 2017 (3.4%, 95% CI = 3.4% to 3.9%), increasing to 5.0% (95% CI = 5.0% to 5.7%) in 2018 (2018 vs 2016 SR ratio = 1.52, 95% CI = 1.51 to 1.62). In 2018, several southern states with a high lung-cancer burden (eg, Mississippi, West Virginia, and Arkansas) had relatively low SRs (<4%) among eligible adults, whereas several northeastern states with lower lung cancer burden (eg, Massachusetts, Vermont, and New Hampshire) had the highest SRs (12.8%-15.2%). The exception was Kentucky, which had the nation's highest lung cancer mortality rate and one of the highest SRs (13.7%).ConclusionsFewer than 1 in 20 eligible adults received LCS nationally, and uptake varied widely across states. LCS rates were not aligned with lung cancer burden across states, except for Kentucky, which has supported comprehensive efforts to implement LCS.
Project description:ImportanceScreening for lung cancer has the potential to reduce mortality, but in addition to detecting aggressive tumors, screening will also detect indolent tumors that otherwise may not cause clinical symptoms. These overdiagnosis cases represent an important potential harm of screening because they incur additional cost, anxiety, and morbidity associated with cancer treatment.ObjectiveTo estimate overdiagnosis in the National Lung Screening Trial (NLST).Design, setting, and participantsWe used data from the NLST, a randomized trial comparing screening using low-dose computed tomography (LDCT) vs chest radiography (CXR) among 53 452 persons at high risk for lung cancer observed for 6.4 years, to estimate the excess number of lung cancers in the LDCT arm of the NLST compared with the CXR arm.Main outcomes and measuresWe calculated 2 measures of overdiagnosis: the probability that a lung cancer detected by screening with LDCT is an overdiagnosis (PS), defined as the excess lung cancers detected by LDCT divided by all lung cancers detected by screening in the LDCT arm; and the number of cases that were considered overdiagnosis relative to the number of persons needed to screen to prevent 1 death from lung cancer.ResultsDuring follow-up, 1089 lung cancers were reported in the LDCT arm and 969 in the CXR arm of the NLST. The probability is 18.5% (95% CI, 5.4%-30.6%) that any lung cancer detected by screening with LDCT was an overdiagnosis, 22.5% (95% CI, 9.7%-34.3%) that a non-small cell lung cancer detected by LDCT was an overdiagnosis, and 78.9% (95% CI, 62.2%-93.5%) that a bronchioalveolar lung cancer detected by LDCT was an overdiagnosis. The number of cases of overdiagnosis found among the 320 participants who would need to be screened in the NLST to prevent 1 death from lung cancer was 1.38.Conclusions and relevanceMore than 18% of all lung cancers detected by LDCT in the NLST seem to be indolent, and overdiagnosis should be considered when describing the risks of LDCT screening for lung cancer.
Project description:A randomized trial has demonstrated that lung cancer screening reduces mortality. Identifying participant and program characteristics that influence the cost-effectiveness of screening will help translate trial results into benefits at the population level.Six U.S. cohorts (men and women aged 50, 60, or 70 years) were simulated in an existing patient-level lung cancer model. Smoking histories reflected observed U.S. patterns. We simulated lifetime histories of 500,000 identical individuals per cohort in each scenario. Costs per quality-adjusted life-year gained ($/QALY) were estimated for each program: computed tomography screening; stand-alone smoking cessation therapies (4-30% 1-year abstinence); and combined programs.Annual screening of current and former smokers aged 50 to 74 years costs between $126,000 and $169,000/QALY (minimum 20 pack-years of smoking) or $110,000 and $166,000/QALY (40 pack-year minimum), when compared with no screening and assuming background quit rates. Screening was beneficial but had a higher cost per QALY when the model included radiation-induced lung cancers. If screen participation doubled background quit rates, the cost of annual screening (at age 50 years, 20 pack-year minimum) was below $75,000/QALY. If screen participation halved background quit rates, benefits from screening were nearly erased. If screening had no effect on quit rates, annual screening costs more but provided fewer QALYs than annual cessation therapies. Annual combined screening/cessation therapy programs at age 50 years costs $130,500 to $159,700/QALY, when compared with annual stand-alone cessation.The cost-effectiveness of computed tomography screening will likely be strongly linked to achievable smoking cessation rates. Trials and further modeling should explore the consequences of relationships between smoking behaviors and screen participation.
Project description:ImportanceDespite the recommendations of lung cancer screening guidelines and the evidence supporting the effectiveness of population-based lung screening, a common barrier to effective lung cancer screening is that the participation rates of low-dose computed tomography (LDCT) screening among individuals with the highest risk are not large. There are limited data from clinical practice regarding whether opportunistic LDCT screening is associated with reduced lung-cancer mortality.ObjectiveTo evaluate whether opportunistic LDCT screening is associated with improved prognosis among adults with lung cancer in mainland China.Design, setting, and participantsThis cohort study included patients diagnosed with lung cancer at Weihai Municipal Hospital Healthcare Group, Weihai City, China, from 2016 to 2021. Data were analyzed from January 2022 to February 2023.ExposuresData collected included demographic indicators, tumor characteristics, comorbidities, blood indexes, and treatment information. Patients were classified into screened and nonscreened groups on the basis of whether or not their lung cancer diagnosis occurred through opportunistic screening.Main outcomes and measuresFollow-up outcome indicators included lung cancer-specific mortality and all-cause mortality. Propensity score matching (PSM) was adopted to account for potential imbalanced factors between groups. The associations between LDCT screening and outcomes were analyzed using Cox regression models based on the matched data. Propensity score regression adjustment and inverse probability treatment weighting were used for sensitivity analysis.ResultsA total of 5234 patients (mean [SD] baseline age, 61.8 [9.8] years; 2518 [48.1%] female) with complete opportunistic screening information were included in the analytical sample, with 2251 patients (42.91%) receiving their lung cancer diagnosis through opportunistic screening. After 1:1 PSM, 2788 patients (1394 in each group) were finally included. The baseline characteristics of the matched patients were balanced between groups. Opportunistic screening with LDCT was associated with a 49% lower risk of lung cancer death (HR, 0.51; 95% CI, 0.42-0.62) and 46% lower risk of all-cause death (HR, 0.54; 95% CI, 0.45-0.64).Conclusions and relevanceIn this cohort study of patients with lung cancer, opportunistic lung cancer screening with LDCT was associated with lower lung cancer mortality and all-cause mortality. These findings suggest that opportunistic screening is an important supplement to population screening to improve prognosis of adults with lung cancer.
Project description:ImportanceLung cancer screening has been widely implemented in Europe and the US. However, there is little evidence on participation and diagnostic yields in population-based lung cancer screening in China.ObjectiveTo assess the participation rate and detection rate of lung cancer in a population-based screening program and the factors associated with participation.Design, setting, and participantsThis cross-sectional study used data from the Cancer Screening Program in Urban China from October 2013 to October 2019, with follow-up until March 10, 2020. The program is conducted at centers in 8 cities in Henan Province, China. Eligible participants were aged 40 to 74 and were evaluated for a high risk for lung cancer using an established risk score system.Main outcomes and measuresOverall and group-specific participation rates by common factors, such as age, sex, and educational level, were calculated. Differences in participation rates between those groups were compared. The diagnostic yield of both screening and nonscreening groups was calculated.ResultsThe study recruited 282 377 eligible participants and included 55 428 with high risk for lung cancer; the mean (SD) age was 55.3 (8.1) years, and 34 966 participants (63.1%) were men. A total of 22 260 participants underwent LDCT (participation rate, 40.16%; 95% CI, 39.82%-40.50%). The multivariable logistic regression model showed that female sex (odds ratio [OR], 1.64; 95% CI, 1.52-1.78), former smoking (OR, 1.26; 95% CI, 1.13-1.41), lack of physical activity (OR, 1.19; 95% CI, 1.14-1.24), family history of lung cancer (OR, 1.73; 95% CI, 1.66-1.79), and 7 other factors were associated with increased participation of LDCT screening. Overall, at 6-year follow-up, 78 participants in the screening group (0.35%; 95% CI, 0.29%-0.42%) and 125 in the nonscreening group (0.38%; 95% CI, 0.33%-0.44%) had lung cancer detected, which resulted in an odds ratio of 0.93 (95% CI, 0.70-1.23; P = .61).Conclusions and relevanceThe low participations rate in the program studied suggests that an improved strategy is needed. These findings may provide useful information for designing effective population-based lung cancer screening strategies in the future.
Project description:IntroductionDespite evidence from clinical trials of favorable shifts in cancer stage and improvements in lung cancer-specific mortality, the effectiveness of lung cancer screening (LCS) in clinical practice has not been clearly revealed.MethodsWe performed a multicenter cohort study of patients diagnosed with a primary lung cancer between January 1, 2014, and September 30, 2019, at one of four U.S. health care systems. The primary outcome variables were cancer stage distribution and annual age-adjusted lung cancer incidence. The primary exposure variable was receipt of at least one low-dose computed tomography for LCS before cancer diagnosis.ResultsA total of 3678 individuals were diagnosed with an incident lung cancer during the study period; 404 (11%) of these patients were diagnosed after initiation of LCS. As screening volume increased, the proportion of patients diagnosed with lung cancer after LCS initiation also rose from 0% in the first quartile of 2014 to 20% in the third quartile of 2019. LCS did not result in a significant change in the overall incidence of lung cancer (average annual percentage change [AAPC]: -0.8 [95% confidence interval (CI): -4.7 to 3.2]) between 2014 and 2018. Stage-specific incidence rates increased for stage I cancer (AAPC = 8.0 [95% CI: 0.8-15.7]) and declined for stage IV disease (AAPC = -6.0 [95% CI: -11.2 to -0.5]).ConclusionsImplementation of LCS at four diverse health care systems has resulted in a favorable shift to a higher incidence of stage I cancer with an associated decline in stage IV disease. Overall lung cancer incidence did not increase, suggesting a limited impact of overdiagnosis.
Project description:ObjectiveTo describe rates of low-dose computed tomography (LDCT) and all chest computerized tomography (CT) before and after Centers for Medicare and Medicaid Services (CMS) initiated reimbursement and requirements for screening and to describe factors associated with receipt of LDCT.Patients and methodsRetrospective cross-sectional study of Medicare enrollees aged 55 to 77 in Parts A and B Medicare without HMO enrollment in a 20% national sample (n=3,887,430 in 2010, 4,200,875 in 2015, and 4,145,542 in 2016). The outcomes were receipt of LDCT and any chest CT from January 1, 2010, to December 31, 2016. Other measures included enrollee demographic characteristics and diagnoses, including diagnoses of tobacco use.ResultsThe number of enrollees aged 55 to 77 with LDCT rose throughout 2015 and early 2016, and then plateaued. In 2016, 0.44% of enrollees, and 2.21% of those with a tobacco-use diagnosis, underwent LDCT screening. There were increases in the rate of any chest CT (LDCT or diagnostic) between January 1, 2010 and December 31, 2016, and most of this was accounted for by LDCTs.ConclusionsTwo years after CMS approval for lung cancer screening reimbursement, less than 5% of the Medicare population eligible for screening received LDCT. More work is required to identify and modify the barriers for LDCT screening.
Project description:Cancer patients have a higher risk of cardiovascular disease (CVD) mortality than the general population. Low dose computed tomography (LDCT) for lung cancer screening offers an opportunity for simultaneous CVD risk estimation in at-risk patients. Our deep learning CVD risk prediction model, trained with 30,286 LDCTs from the National Lung Cancer Screening Trial, achieves an area under the curve (AUC) of 0.871 on a separate test set of 2,085 subjects and identifies patients with high CVD mortality risks (AUC of 0.768). We validate our model against ECG-gated cardiac CT based markers, including coronary artery calcification (CAC) score, CAD-RADS score, and MESA 10-year risk score from an independent dataset of 335 subjects. Our work shows that, in high-risk patients, deep learning can convert LDCT for lung cancer screening into a dual-screening quantitative tool for CVD risk estimation.
Project description:We describe the development and psychometric properties of a new, brief measure of smokers' knowledge of lung cancer screening with low-dose computed tomography (LDCT). Content experts identified key facts smokers should know in making an informed decision about lung cancer screening. Sample questions were drafted and iteratively refined based on feedback from content experts and cognitive testing with ten smokers. The resulting 16-item knowledge measure was completed by 108 heavy smokers in Houston, Texas, recruited from 12/2014 to 09/2015. Item difficulty, item discrimination, internal consistency and test-retest reliability were assessed. Group differences based upon education levels and smoking history were explored. Several items were dropped due to ceiling effects or overlapping constructs, resulting in a 12-item knowledge measure. Additional items with high item uncertainty were retained because of their importance in informed decision making about lung cancer screening. Internal consistency reliability of the final scale was acceptable (KR-20 = 0.66) and test-retest reliability of the overall scale was 0.84 (intraclass correlation). Knowledge scores differed across education levels (F = 3.36, p = 0.04), while no differences were observed between current and former smokers (F = 1.43, p = 0.24) or among participants who met or did not meet the 30-pack-year screening eligibility criterion (F = 0.57, p = 0.45). The new measure provides a brief, valid and reliable indicator of smokers' knowledge of key concepts central to making an informed decision about lung cancer screening with LDCT, and can be part of a broader assessment of the quality of smokers' decision making about lung cancer screening.