Unknown

Dataset Information

0

Use of structural equation models to predict dengue illness phenotype.


ABSTRACT:

Background

Early recognition of dengue, particularly patients at risk for plasma leakage, is important to clinical management. The objective of this study was to build predictive models for dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) using structural equation modelling (SEM), a statistical method that evaluates mechanistic pathways.

Methods/findings

We performed SEM using data from 257 Thai children enrolled within 72 h of febrile illness onset, 156 with dengue and 101 with non-dengue febrile illnesses. Models for dengue, DHF, and DSS were developed based on data obtained three and one day(s) prior to fever resolution (fever days -3 and -1, respectively). Models were validated using data from 897 subjects who were not used for model development. Predictors for dengue and DSS included age, tourniquet test, aspartate aminotransferase, and white blood cell, % lymphocytes, and platelet counts. Predictors for DHF included age, aspartate aminotransferase, hematocrit, tourniquet test, and white blood cell and platelet counts. The models showed good predictive performances in the validation set, with area under the receiver operating characteristic curves (AUC) at fever day -3 of 0.84, 0.67, and 0.70 for prediction of dengue, DHF, and DSS, respectively. Predictive performance was comparable using data based on the timing relative to enrollment or illness onset, and improved closer to the critical phase (AUC 0.73 to 0.94, 0.61 to 0.93, and 0.70 to 0.96 for dengue, DHF, and DSS, respectively).

Conclusions

Predictive models developed using SEM have potential use in guiding clinical management of suspected dengue prior to the critical phase of illness.

SUBMITTER: Park S 

PROVIDER: S-EPMC6181434 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Use of structural equation models to predict dengue illness phenotype.

Park Sangshin S   Srikiatkhachorn Anon A   Kalayanarooj Siripen S   Macareo Louis L   Green Sharone S   Friedman Jennifer F JF   Rothman Alan L AL  

PLoS neglected tropical diseases 20181001 10


<h4>Background</h4>Early recognition of dengue, particularly patients at risk for plasma leakage, is important to clinical management. The objective of this study was to build predictive models for dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) using structural equation modelling (SEM), a statistical method that evaluates mechanistic pathways.<h4>Methods/findings</h4>We performed SEM using data from 257 Thai children enrolled within 72 h of febrile illness onset, 156 wit  ...[more]

Similar Datasets

| S-EPMC3371320 | biostudies-literature
| S-EPMC7410097 | biostudies-literature
| S-EPMC4877056 | biostudies-literature
| S-EPMC6497081 | biostudies-literature
| S-EPMC7451754 | biostudies-literature
| S-EPMC6075718 | biostudies-literature
| S-EPMC2922975 | biostudies-literature
| S-EPMC10287946 | biostudies-literature
| S-EPMC9385099 | biostudies-literature
| S-EPMC6713564 | biostudies-literature