Unknown

Dataset Information

0

Magnetization switching of multi-state magnetic structures with current-induced torques.


ABSTRACT: Spintronic devices often require the ability to locally change the magnetic configuration of ferromagnetic structures on a sub-micron scale. A promising route for achieving this goal is the use of heavy metal/ferromagnetic heterostructures where current flowing through the heavy metal layer generates field-like and anti-damping like torques on the magnetic layer. Commonly, such torques are used to switch magnets with a uniaxial anisotropy between two uniformly magnetized states. Here, we use such torques to switch magnetization in Ta/Ni0.80Fe0.20 heterostructures with uniaxial and biaxial anisotropy, where in the latter the magnetization is non-uniform. The anisotropies are induced by shape and the magnetic state is monitored using the planar Hall effect. As structures with several easy axes induced by shape can be part of a magnetic memory element, the results pave the way for multi-level magnetic memory with spin-orbit torque switching.

SUBMITTER: Das S 

PROVIDER: S-EPMC6181950 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6937281 | biostudies-literature
| S-EPMC10754071 | biostudies-literature
| S-EPMC6113327 | biostudies-literature
| S-EPMC5813193 | biostudies-literature
| S-EPMC5677620 | biostudies-literature
| S-EPMC5834006 | biostudies-literature
| S-EPMC5331337 | biostudies-literature
| S-EPMC7125167 | biostudies-literature
| S-EPMC5681510 | biostudies-literature
| S-EPMC8613283 | biostudies-literature