Project description:We report a family with a novel CSF1R mutation causing hereditary diffuse leucoencephalopathy with axonal spheroids. Family members presented with neuropsychiatric and behavioural symptoms, with subsequent development of motor symptoms and gait disturbance. MRI brain showed extensive white matter change with a frontal predominance and associated atrophy in two members of the family. Genetic testing revealed a novel mutation c.2342C>T (p.A781V) in the CSF1R gene in two brothers of the family. This report highlights the difficulties in diagnosing HDLS and discusses the indications for testing for mutations in the CSF1R gene.
Project description:BACKGROUND:Colony-stimulating factor 1 receptor is a tyrosine kinase transmembrane protein that mediates proliferation, differentiation, and survival of monocytes/macrophages and microglia. CSF1R gene mutations cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an autosomal-dominantly inherited microgliopathy, leading to early onset dementia with high lethality. METHODS:By interdisciplinary assessment of a complex neuropsychiatric condition in a 44-year old female patient, we narrowed down the genetic diagnostic to CSF1R gene sequencing. Flow cytometric analyses of uncultivated peripheral blood monocytes were conducted sequentially to measure the cell surface CSF1 receptor and autophosphorylation levels. Monocyte subpopulations were monitored during disease progression. RESULTS:We identified a novel heterozygous deletion-insertion mutation c.2527_2530delinsGGCA, p.(Ile843_Leu844delinsGlyIle) in our patient with initial signs of HDLS. Marginally elevated cell surface CSF1 receptor levels with increased Tyr723 autophosphorylation suggest an enhanced receptor activity. Furthermore, we observed a shift in monocyte subpopulations during disease course. CONCLUSION:Our data indicate a mutation-related CSF1R gain-of-function, accompanied by an altered composition of the peripheral innate immune cells in our patient with HDLS. Since pharmacological targeting of CSF1R with tyrosine kinase inhibitors prevents disease progression in mouse models of neurodegenerative disorders, a potential pharmacological benefit of CSF1R inhibition remains to be elucidated for patients with HDLS.
Project description:Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant central nervous system white-matter disease with variable clinical presentations, including personality and behavioral changes, dementia, depression, parkinsonism, seizures and other phenotypes. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor 1 receptor (encoded by CSF1R) in 14 families with HDLS. In one kindred, we confirmed the de novo occurrence of the mutation. Follow-up sequencing identified an additional CSF1R mutation in an individual diagnosed with corticobasal syndrome. In vitro, CSF-1 stimulation resulted in rapid autophosphorylation of selected tyrosine residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from partial loss of CSF1R function. As CSF1R is a crucial mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.
Project description:Mutations in the colony stimulating factor 1 receptor (CSF1R) have recently been discovered as causal for hereditary diffuse leukoencephalopathy with axonal spheroids. We identified a novel, heterozygous missense mutation in CSF1R [c.1990G > A p.(E664K)] by exome sequencing in five members of a family with hereditary diffuse leukoencephalopathy with axonal spheroids. Three affected siblings had characteristic white matter abnormalities and presented with progressive neurological decline. In the fourth affected sibling, early progression halted after allogeneic haematopoietic stem cell transplantation from a related donor. Blood spot DNA from this subject displayed chimerism in CSF1R acquired after haematopoietic stem cell transplantation. Interestingly, both parents were unaffected but the mother's blood and saliva were mosaic for the CSF1R mutation. Our findings suggest that expression of wild-type CSF1R in some cells, whether achieved by mosaicism or chimerism, may confer benefit in hereditary diffuse leukoencephalopathy with axonal spheroids and suggest that haematopoietic stem cell transplantation might have a therapeutic role for this disorder.
Project description:Atypical Parkinsonism associated with white matter pathology has been described in cerebrovascular diseases, mitochondrial cytopathies, osmotic demyelinating disorders, leukoencephalopathies leukodystrophies, and others. Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal dominant disorder with symptomatic onset in midlife and death within a few years after symptom onset. Neuroimaging reveals cerebral white matter lesions that are pathologically characterized by non-inflammatory myelin loss, reactive astrocytosis, and axonal spheroids. Most cases are caused by mutations in the colony-stimulating factor 1 receptor (CSF1R) gene. We studied neuropathologically verified HDLS patients with CSF1R mutations to assess parkinsonian features. Ten families were evaluated with 16 affected individuals. During the course of the illness, all patients had at least some degree of bradykinesia. Fifteen patients had postural instability, and seven had rigidity. Two patients initially presented with parkinsonian gait and asymmetrical bradykinesia. These two patients and two others exhibited bradykinesia, rigidity, postural instability, and tremor (two with resting) early in the course of the illness. Levodopa/carbidopa therapy in these four patients provided no benefit, and the remaining 12 patients were not treated. The mean age of onset for all patients was about 45 years (range, 18-71) and the mean disease duration was approximately six years (range, 3-11). We also reviewed HDLS patients published prior to the CSF1R discovery for the presence of parkinsonian features. Out of 50 patients, 37 had gait impairments, 8 rigidity, 7 bradykinesia, and 5 resting tremor. Our report emphasizes the presence of atypical Parkinsonism in HDLS due to CSF1R mutations.
Project description:Hereditary diffuse leukoencephalopathy with spheroids (HDLS) in humans is a rare autosomal dominant disease characterized by giant neuroaxonal swellings (spheroids) within the CNS white matter. Symptoms are variable and can include personality and behavioural changes. Patients with this disease have mutations in the protein kinase domain of the colony-stimulating factor 1 receptor (CSF1R) which is a tyrosine kinase receptor essential for microglia development. We investigated the effects of these mutations on Csf1r signalling using a factor dependent cell line. Corresponding mutant forms of murine Csf1r were expressed on the cell surface at normal levels, and bound CSF1, but were not able to sustain cell proliferation. Since Csf1r signaling requires receptor dimerization initiated by CSF1 binding, the data suggest a mechanism for phenotypic dominance of the mutant allele in HDLS.
Project description:Swedish type Hereditary Diffuse Leukoencephalopathy with Spheroids (HDLS-S) is a severe adult-onset leukoencephalopathy with the histopathological hallmark of neuraxonal degeneration with spheroids, described in a large family with a dominant inheritance pattern. The initial stage of the disease is dominated by frontal lobe symptoms that develop into a rapidly advancing encephalopathy with pyramidal, deep sensory, extrapyramidal and optic tract symptoms. Median survival is less than 10?years. Recently, pathogenic mutations in CSF1R were reported in a clinically and histologically similar leukoencephalopathy segregating in several families. Still, the cause of HDLS-S remained elusive since its initial description in 1984, with no CSF1R mutations identified in the family. Here we update the original findings associated with HDLS-S after a systematic and recent assessment of several family members. We also report the results from exome sequencing analyses indicating the p.Cys152Phe variant in the alanyl tRNA synthetase (AARS) gene as the probable cause of this disease. The variant affects an amino acid located in the aminoacylation domain of the protein and does not cause differences in splicing or expression in the brain. Brain pathology in one case after 10?years of disease duration showed the end stage of the disease to be characterized by widespread liquefaction of the white matter leaving only some macrophages and glial cells behind the centrifugally progressing front. These results point to AARS as a candidate gene for rapidly progressing adult-onset CSF1R-negative leukoencephalopathies.
Project description:BackgroundThe genetic mechanisms of binge eating (BE) as a disease identity remain obscure. BE is usually viewed as a part of the behavioral variant of frontotemporal dementia (bvFTD) features. We encountered a family with hereditary diffuse leukoencephalopathy with spheroids (HDLS) that manifested uniformly with binge-eating-onset dementia. The genetic factors associated with the rare phenotype were investigated.MethodsThe detailed phenotypes of the patients were described. We performed whole-exome sequencing (WES) of family members and repeat-primed PCR to analyze the patients' expansion size of C9orf72, a well-established gene causing FTD. The WES results of additional HDLS patients without BE manifestations were also investigated.ResultsAll affected individuals had a BE-dementia-epilepsy pattern of disease progression. A recurrent disease-causing mutation in CSF1R established the diagnosis of HDLS in the family. No abnormalities in the expansion size of C9orf72 were detected. The concurrence of a recurrent CSF1R mutation and a rare variant in NMUR2, a gene functionally related to BE, was revealed in the affected family members. No potentially pathogenic variants in other known BE-associated genes were identified. Both the NMUR2 variant and the CSF1R mutation cosegregated with the BE-dementia-epilepsy phenotype in the family. In three additional HDLS patients without BE, no pathogenic variants in NMUR2 were detected.ConclusionsWe propose that synergistic genetic effects of NMUR2 and CSF1R variants may exist and contribute to the development of the BE phenotype in HDLS. NMUR2 is one of the potential susceptible genes in BE and may contribute in a background of a disrupted structural neuronetwork. Further studies in other BE-related disorders are required.
Project description:The study of consanguineous families has provided novel insights into genetic causes of monogenic parkinsonism. Here, we present a family from the rural Khyber Pakhtunkhwa province, Pakistan, where three siblings were diagnosed with early-onset parkinsonism. Homozygosity mapping of two affected siblings and three unaffected family members identified two candidate autozygous loci segregating with disease, 8q24.12-8q24.13 and 9q31.2-q33.1. Whole-exome sequence analysis identified a single rare homozygous missense sequence variant within this region, CCN3 p.D82G. Although unaffected family members were heterozygous for this putative causal mutation, it was absent in 3,222 non-Parkinson's disease (PD) subjects of Pakistani heritage. Screening of 353 Australian PD cases, including 104 early-onset cases and 57 probands from multi-incident families, also did not identify additional carriers. Overexpression of wild-type and the variant CCN3 constructs in HEK293T cells identified an impaired section of the variant protein, alluding to potential mechanisms for disease. Further, qPCR analysis complemented previous microarray data suggesting mRNA expression of CCN3 was downregulated in unrelated sporadic PD cases when compared to unaffected subjects. These data indicate a role for CCN3 in parkinsonism, both in this family as well as sporadic PD cases; however, the specific mechanisms require further investigation. Additionally, further screening of the rural community where the family resided is warranted to assess the local frequency of the variant. Overall, this study highlights the value of investigating underrepresented and isolated affected families for novel putative parkinsonism genes.
Project description:BACKGROUND:Hereditary diffuse leukodystrophy with spheroids is a rare type of leukoencephalopathy. Mutations in the colony stimulating factor 1 receptor have recently been identified to be the cause of this microgliopathy. Clinical and radiological presentation can often misguide physicians during the diagnosis of patients with this underdiagnosed disease. CASE PRESENTATION:We present a 29 year-old woman with a rapid course of hereditary diffuse leukodystrophy with spheroids. She mainly showed cognitive impairment and severe motor dysfunctions. Her MRI showed spotted and confluent hyperintensities of the white matter on T2-weighted images involving the corticospinal tract as well as the corpus callosum. Further, those lesions showed striking restricted diffusion. As this restricted diffusion in all areas showing signs of leukoencephalopathy was so impressive we searched Medline for these terms and got hereditary diffuse leukodystrophy with spheroids as one of the first results. After a comprehensive diagnostic workup and exclusion of other leukoencephalopathies, stereotactic biopsy and genetic testing confirmed the diagnosis. CONCLUSION:This case points out at two important features of hereditary diffuse leukodystrophy with spheroids being spotted and/or confluent leukoencephalopathy with areas of restricted diffusion. This might help to identify more patients with this underdiagnosed disease. Moreover, the rapid clinical course in our patient raises the question whether the relatively pronounced areas of restricted diffusion are indicative of a more acute progression of the disease.