Unknown

Dataset Information

0

Bioactive Hydrogel Marbles.


ABSTRACT: Liquid marbles represented a significant advance in the manipulation of fluids as they used particle films to confine liquid drops, creating a robust and durable soft solid. We exploit this technology to engineering a bioactive hydrogel marble (BHM). Specifically, pristine bioactive glass nanoparticles were chemically tuned to produce biocompatible hydrophobic bioactive glass nanoparticles (H-BGNPs) that shielded a gelatin-based bead. The designed BHM shell promoted the growth of a bone-like apatite layer upon immersion in a physiological environment. The fabrication process allowed the efficient incorporation of drugs and cells into the engineered structure. The BHM provided a simultaneously controlled release of distinct encapsulated therapeutic model molecules. Moreover, the BHM sustained cell encapsulation in a 3D environment as demonstrated by an excellent in vitro stability and cytocompatibility. The engineered structures also showed potential to regulate a pre-osteoblastic cell line into osteogenic commitment. Overall, these hierarchical nanostructured and functional marbles revealed a high potential for future applications in bone tissue engineering.

SUBMITTER: Leite AJ 

PROVIDER: S-EPMC6185919 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9865651 | biostudies-literature
| S-EPMC7589305 | biostudies-literature
| S-EPMC3546392 | biostudies-literature
| S-EPMC7070556 | biostudies-literature
| S-EPMC4767703 | biostudies-literature
| S-EPMC10682960 | biostudies-literature
| S-EPMC1903348 | biostudies-literature
| S-EPMC10200057 | biostudies-literature
| S-EPMC5770986 | biostudies-literature
| S-EPMC1705491 | biostudies-other