Unknown

Dataset Information

0

Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes.


ABSTRACT: Variance of community abundance will be reduced relative to its theoretical maximum whenever population densities fluctuate asynchronously. Fishing communities and mobile predators can switch among fish species and/or fishing locations with asynchronous dynamics, thereby buffering against variable resource densities (termed 'portfolio effects', PEs). However, whether variation among species or locations represent the dominant contributor to PE remains relatively unexplored. Here, we apply a spatio-temporal model to multidecadal time series (1982-2015) for 20 bottom-associated fishes in seven marine ecosystems. For each ecosystem, we compute the reduction in variance over time in total biomass relative to its theoretical maximum if species and locations were perfectly correlated (total PE). We also compute the reduction in variance due to asynchrony among species at each location (species PE) or the reduction due to asynchrony among locations for each species (spatial PE). We specifically compute total, species and spatial PE in 10-year moving windows to detect changes over time. Our analyses revealed that spatial PE are stronger than species PE in six of seven ecosystems, and that ecosystems where species PE is constant over time can exhibit shifts in locations that strongly contribute to PE. We therefore recommend that spatial and total PE be monitored as ecosystem indicators representing risk exposure for human and natural consumers.

SUBMITTER: Thorson JT 

PROVIDER: S-EPMC6191698 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes.

Thorson James T JT   Scheuerell Mark D MD   Olden Julian D JD   Schindler Daniel E DE  

Proceedings. Biological sciences 20181003 1888


Variance of community abundance will be reduced relative to its theoretical maximum whenever population densities fluctuate asynchronously. Fishing communities and mobile predators can switch among fish species and/or fishing locations with asynchronous dynamics, thereby buffering against variable resource densities (termed 'portfolio effects', PEs). However, whether variation among species or locations represent the dominant contributor to PE remains relatively unexplored. Here, we apply a spat  ...[more]

Similar Datasets

| S-EPMC5995104 | biostudies-literature
| S-EPMC7381576 | biostudies-literature
| S-EPMC7250893 | biostudies-literature
| S-EPMC5069519 | biostudies-literature
| S-EPMC3580147 | biostudies-literature
| S-EPMC3108176 | biostudies-literature
| S-EPMC4632578 | biostudies-literature
| S-EPMC9616811 | biostudies-literature
| S-EPMC4164363 | biostudies-literature
| S-EPMC7060209 | biostudies-literature