Unknown

Dataset Information

0

Electrodeposited metal-organic framework films as self-assembled hierarchically superstructured supports for stable omniphobic surface coatings.


ABSTRACT: Superhierarchically rough films are rapidly synthesised on metal substrates via electrochemically triggered self-assembly of meso/macroporous-structured metal-organic framework (MOF) crystals. These coatings are applied to immobilise a functional oil with low surface energy to provide stable coatings repellent to a wide range of hydrophobic as well as hydrophilic fluids. Such omniphobic surfaces are highly interesting for several applications such as anti-fouling, anti-icing, and dropwise condensation, and become easily scalable with the presented bottom-up fabrication approach. As investigated by environmental scanning electron microscopy (ESEM), the presented perfluorinated oil-infused Cu-BTC coating constitutes of a flat liquid-covered surface with protruding edges of octahedral superstructured MOF crystals. Water and non-polar diiodomethane droplets form considerably high contact angles and even low-surface-tension fluids, e.g. acetone, form droplets on the infused coating. The repellent properties towards the test fluids do not change upon extended water spraying in contrast to oil-infused porous copper oxide or native copper surfaces. It is discussed in detail, how the presented electrodeposited MOF films grow and provide a proficient surface morphology to stabilise the functional oil film due to hemiwicking.

SUBMITTER: Sablowski J 

PROVIDER: S-EPMC6194076 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electrodeposited metal-organic framework films as self-assembled hierarchically superstructured supports for stable omniphobic surface coatings.

Sablowski Jakob J   Linnemann Julia J   Hempel Simone S   Hoffmann Volker V   Unz Simon S   Beckmann Michael M   Giebeler Lars L  

Scientific reports 20181018 1


Superhierarchically rough films are rapidly synthesised on metal substrates via electrochemically triggered self-assembly of meso/macroporous-structured metal-organic framework (MOF) crystals. These coatings are applied to immobilise a functional oil with low surface energy to provide stable coatings repellent to a wide range of hydrophobic as well as hydrophilic fluids. Such omniphobic surfaces are highly interesting for several applications such as anti-fouling, anti-icing, and dropwise conden  ...[more]

Similar Datasets

| S-EPMC4001284 | biostudies-literature
| S-EPMC9070450 | biostudies-literature
| S-EPMC7252902 | biostudies-literature
| S-EPMC5371993 | biostudies-literature
| S-EPMC9747612 | biostudies-literature
| S-EPMC9863956 | biostudies-literature
| S-EPMC3499644 | biostudies-literature
| S-EPMC5830284 | biostudies-literature
| S-EPMC10832346 | biostudies-literature
| S-EPMC8025679 | biostudies-literature