The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies.
Ontology highlight
ABSTRACT: Confirmatory factor analysis (CFA) has been frequently applied to executive function measurement since first used to identify a three-factor model of inhibition, updating, and shifting; however, subsequent CFAs have supported inconsistent models across the life span, ranging from unidimensional to nested-factor models (i.e., bifactor without inhibition). This systematic review summarized CFAs on performance-based tests of executive functions and reanalyzed summary data to identify best-fitting models. Eligible CFAs involved 46 samples (N = 9,756). The most frequently accepted models varied by age (i.e., preschool = one/two-factor; school-age = three-factor; adolescent/adult = three/nested-factor; older adult = two/three-factor), and most often included updating/working memory, inhibition, and shifting factors. A bootstrap reanalysis simulated 5,000 samples from 21 correlation matrices (11 child/adolescent; 10 adult) from studies including the three most common factors, fitting seven competing models. Model results were summarized as the mean percent accepted (i.e., average rate at which models converged and met fit thresholds: CFI ? .90/RMSEA ? .08) and mean percent selected (i.e., average rate at which a model showed superior fit to other models: ?CFI ? .005/.010/?RMSEA ? -.010/-.015). No model consistently converged and met fit criteria in all samples. Among adult samples, the nested-factor was accepted (41-42%) and selected (8-30%) most often. Among child/adolescent samples, the unidimensional model was accepted (32-36%) and selected (21-53%) most often, with some support for two-factor models without a differentiated shifting factor. Results show some evidence for greater unidimensionality of executive function among child/adolescent samples and both unity and diversity among adult samples. However, low rates of model acceptance/selection suggest possible bias toward the publication of well-fitting but potentially nonreplicable models with underpowered samples. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
SUBMITTER: Karr JE
PROVIDER: S-EPMC6197939 | biostudies-literature | 2018 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA