Unknown

Dataset Information

0

Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins.


ABSTRACT: In every established species, protein-protein interactions have evolved such that they are fit for purpose. However, the molecular details of the evolution of new protein-protein interactions are poorly understood. We have used nuclear magnetic resonance spectroscopy to investigate the changes in structure and dynamics during the evolution of a protein-protein interaction involving the intrinsically disordered CREBBP (CREB-binding protein) interaction domain (CID) and nuclear coactivator binding domain (NCBD) from the transcriptional coregulators NCOA (nuclear receptor coactivator) and CREBBP/p300, respectively. The most ancient low-affinity "Cambrian-like" [540 to 600 million years (Ma) ago] CID/NCBD complex contained less secondary structure and was more dynamic than the complexes from an evolutionarily younger "Ordovician-Silurian" fish ancestor (ca. 440 Ma ago) and extant human. The most ancient Cambrian-like CID/NCBD complex lacked one helix and several interdomain interactions, resulting in a larger solvent-accessible surface area. Furthermore, the most ancient complex had a high degree of millisecond-to-microsecond dynamics distributed along the entire sequences of both CID and NCBD. These motions were reduced in the Ordovician-Silurian CID/NCBD complex and further redistributed in the extant human CID/NCBD complex. Isothermal calorimetry experiments show that complex formation is enthalpically favorable and that affinity is modulated by a largely unfavorable entropic contribution to binding. Our data demonstrate how changes in structure and motion conspire to shape affinity during the evolution of a protein-protein complex and provide direct evidence for the role of structural, dynamic, and frustrational plasticity in the evolution of interactions between intrinsically disordered proteins.

SUBMITTER: Jemth P 

PROVIDER: S-EPMC6200366 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins.

Jemth Per P   Karlsson Elin E   Vögeli Beat B   Guzovsky Brenda B   Andersson Eva E   Hultqvist Greta G   Dogan Jakob J   Güntert Peter P   Riek Roland R   Chi Celestine N CN  

Science advances 20181024 10


In every established species, protein-protein interactions have evolved such that they are fit for purpose. However, the molecular details of the evolution of new protein-protein interactions are poorly understood. We have used nuclear magnetic resonance spectroscopy to investigate the changes in structure and dynamics during the evolution of a protein-protein interaction involving the intrinsically disordered CREBBP (CREB-binding protein) interaction domain (CID) and nuclear coactivator binding  ...[more]

Similar Datasets

| S-EPMC5419745 | biostudies-literature
| S-EPMC9213797 | biostudies-literature
| S-EPMC6598773 | biostudies-literature
| S-EPMC9250585 | biostudies-literature
| S-EPMC3985426 | biostudies-literature
| S-EPMC6447293 | biostudies-literature
| S-EPMC5539115 | biostudies-literature
| S-EPMC3506533 | biostudies-literature
| S-EPMC8148370 | biostudies-literature
| S-EPMC8784115 | biostudies-literature