Unknown

Dataset Information

0

A phenotyping algorithm to identify acute ischemic stroke accurately from a national biobank: the Million Veteran Program.


ABSTRACT:

Background

Large databases provide an efficient way to analyze patient data. A challenge with these databases is the inconsistency of ICD codes and a potential for inaccurate ascertainment of cases. The purpose of this study was to develop and validate a reliable protocol to identify cases of acute ischemic stroke (AIS) from a large national database.

Methods

Using the national Veterans Affairs electronic health-record system, Center for Medicare and Medicaid Services, and National Death Index data, we developed an algorithm to identify cases of AIS. Using a combination of inpatient and outpatient ICD9 codes, we selected cases of AIS and controls from 1992 to 2014. Diagnoses determined after medical-chart review were considered the gold standard. We used a machine-learning algorithm and a neural network approach to identify AIS from ICD9 codes and electronic health-record information and compared it with a previous rule-based stroke-classification algorithm.

Results

We reviewed administrative hospital data, ICD9 codes, and medical records of 268 patients in detail. Compared with the gold standard, this AIS algorithm had a sensitivity of 91%, specificity of 95%, and positive predictive value of 88%. A total of 80,508 highly likely cases of AIS were identified using the algorithm in the Veterans Affairs national cardiovascular disease-risk cohort (n=2,114,458).

Conclusion

Our algorithm had high specificity for identifying AIS in a nationwide electronic health-record system. This approach may be utilized in other electronic health databases to accurately identify patients with AIS.

SUBMITTER: Imran TF 

PROVIDER: S-EPMC6201999 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7233040 | biostudies-literature
| S-EPMC10863017 | biostudies-literature
| S-EPMC9997524 | biostudies-literature
| S-EPMC7020617 | biostudies-literature
| S-EPMC7580856 | biostudies-literature
| S-EPMC7118558 | biostudies-literature
| S-EPMC8412179 | biostudies-literature
| S-EPMC10029030 | biostudies-literature
| S-EPMC11332552 | biostudies-literature
| S-EPMC10081391 | biostudies-literature