Project description:PURPOSE:To characterize the molecular genetics of autosomal recessive Noonan syndrome. METHODS:Families underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction. RESULTS:Twelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings. CONCLUSION:These clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.
Project description:The von Willebrand receptor complex, which is composed of the glycoproteins Ib?, Ib?, GPV, and GPIX, plays an essential role in the earliest steps in hemostasis. During the last 4 decades, it has become apparent that loss of function of any 1 of 3 of the genes encoding these glycoproteins (namely, GP1BA, GP1BB, and GP9) leads to autosomal recessive macrothrombocytopenia complicated by bleeding. A small number of variants in GP1BA have been reported to cause a milder and dominant form of macrothrombocytopenia, but only 2 tentative reports exist of such a variant in GP1BB By analyzing data from a collection of more than 1000 genome-sequenced patients with a rare bleeding and/or platelet disorder, we have identified a significant association between rare monoallelic variants in GP1BB and macrothrombocytopenia. To strengthen our findings, we sought further cases in 2 additional collections in the United Kingdom and Japan. Across 18 families exhibiting phenotypes consistent with autosomal dominant inheritance of macrothrombocytopenia, we report on 27 affected cases carrying 1 of 9 rare variants in GP1BB.
Project description:AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far.
Project description:The GNE gene encodes the rate-limiting, bifunctional enzyme of sialic acid biosynthesis, uridine diphosphate-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). Biallelic GNE mutations underlie GNE myopathy, an adult-onset progressive myopathy. GNE myopathy-associated GNE mutations are predominantly missense, resulting in reduced, but not absent, GNE enzyme activities. The exact pathomechanism of GNE myopathy remains unknown, but likely involves aberrant (muscle) sialylation. Here, we summarize 154 reported and novel GNE variants associated with GNE myopathy, including 122 missense, 11 nonsense, 14 insertion/deletions, and seven intronic variants. All variants were deposited in the online GNE variation database (http://www.dmd.nl/nmdb2/home.php?select_db=GNE). We report the predicted effects on protein function of all variants well as the predicted effects on epimerase and/or kinase enzymatic activities of selected variants. By analyzing exome sequence databases, we identified three frequently occurring, unreported GNE missense variants/polymorphisms, important for future sequence interpretations. Based on allele frequencies, we estimate the world-wide prevalence of GNE myopathy to be ?4-21/1,000,000. This previously unrecognized high prevalence confirms suspicions that many patients may escape diagnosis. Awareness among physicians for GNE myopathy is essential for the identification of new patients, which is required for better understanding of the disorder's pathomechanism and for the success of ongoing treatment trials.
Project description:OBJECTIVE:To identify a new genetic cause in patients segregating distal hereditary motor neuropathy (dHMN) with an autosomal recessive pattern. METHODS:Whole-exome sequencing was conducted in two siblings and was combined with segregation analysis. Additionally, 83 unrelated dHMN patients with unknown genetic cause were screened. RNA analysis was performed using blood lymphocytes and HEK293 cells transfected with mutant plasmids. Immunohistochemistry and Western blot analysis was applied to the nerve tissue. The enzymatic activities of mutant proteins were measured in the cultured cells to verify the pathogenicity of variants. RESULTS:The clinical features of the patients showed late-onset phenotype of distal motor neuropathy without sensory involvement. We identified that compound heterozygous variants of c.1342C>T and c.2071_2072delGCinsTT in the membrane metalloendopeptidase (MME) gene co-segregated with the phenotype in a dHMN family. In an additional group of 83 patients with dHMN, compound heterozygous variants of c.1416+2T>C and c.2027C>T in MME were identified in one patient. The splice site variant c.1416+2T>C results in skipping of exon 13. The stop variant c.1342C>T induces mRNA degradation via nonsense-mediated mRNA decay. Transcript levels of MME in the lymphocytes showed no significant differences between the patients and controls. We also identified that MME variants were associated with mild decrease in protein expression in the sural nerve and significant impairments of enzymatic activity. INTERPRETATION:Variants in the MME gene were associated with not only a Charcot-Marie-Tooth neuropathy phenotype but also with an autosomal-recessive dHMN phenotype. Loss of function may play a role in the pathogenesis of dHMN.
Project description:PurposeVariants in genes encoding sarcomeric proteins are the most common cause of inherited cardiomyopathies. However, the underlying genetic cause remains unknown in many cases. We used exome sequencing to reveal the genetic etiology in patients with recessive familial cardiomyopathy.MethodsExome sequencing was carried out in three consanguineous families. Functional assessment of the variants was performed.ResultsAffected individuals presented with hypertrophic or dilated cardiomyopathy of variable severity from infantile- to early adulthood-onset and sudden cardiac death. We identified a homozygous missense substitution (c.170C>A, p.[Ala57Asp]), a homozygous translation stop codon variant (c.106G>T, p.[Glu36Ter]), and a presumable homozygous essential splice acceptor variant (c.482-1G>A, predicted to result in skipping of exon 5). Morpholino knockdown of the MYL3 orthologue in zebrafish, cmlc1, resulted in compromised cardiac function, which could not be rescued by reintroduction of MYL3 carrying either the nonsense c.106G>T or the missense c.170C>A variants. Minigene assay of the c.482-1G>A variant indicated a splicing defect likely resulting in disruption of the EF-hand Ca2+ binding domains.ConclusionsOur data demonstrate that homozygous MYL3 loss-of-function variants can cause of recessive cardiomyopathy and occurrence of sudden cardiac death, most likely due to impaired or loss of myosin essential light chain function.
Project description:We previously demonstrated that the mutations Met1Val (M1V) and the deletion of nucleotides 1484-1490 (1484-1490del) in Dentin matrix protein-1 (DMP1) cause the novel disorder autosomal recessive hypophosphatemic rickets (ARHR), which is associated with elevated fibroblast growth factor-23 (FGF23). To further understand the role of DMP1 in ARHR, we undertook molecular genetic and in vitro expression studies. First, we examined a kindred with a severe hypophosphatemic rickets phenotype and recessive inheritance. Analyses of this family demonstrated that the affected members had elevated serum FGF23 and carried a large, biallelic deletion that removed the majority of DMP1. At a minimum, this deletion encompassed 49 kb between DMP1 exon 3 and an intergenic region 5' to the next telomeric gene, integrin-binding sialoprotein (IBSP). We next performed immunofluorescent studies in cells to understand the effects of the known ARHR mutations on DMP1 cellular processing. These analyses showed that the M1V DMP1 mutant was not sorted to the trans-Golgi network (TGN) and secretory pathway, but filled the entire cytoplasm. In contrast, the 1484-1490del mutant localized to the TGN and was secreted, similar to wild type DMP1. The 1484-1490del mutation replaces the DMP1 18 C-terminal amino acids with 33 non-native residues. Truncation of wild type DMP1 by these native 18 residues followed by Western blot and confocal microscopic analyses demonstrated a wild type expression pattern when compared with the 1484-1490del mutant, indicating that the last 18 residues are not critical for cellular trafficking, but that the 33 additional residues arising from the 1484-1490del mutation likely compromise DMP1 processing. The relationship between DMP1 and FGF23 is unclear. To test endogenous DMP1 response to serum metabolites that also regulate FGF23, UMR-106 cells were treated with 1,25(OH)(2) vitamin D (1x10(-7) M) and showed a 12-fold increase in DMP1 mRNA and protein at 24 h. In summary, we have identified a novel DMP1 deletion as the cause of ARHR, as well as demonstrated that the ARHR mutations alter DMP1 cellular processing, and that DMP1 can be regulated by vitamin D. Taken together, this work expands our understanding of the genetic and molecular mechanisms associated with DMP1 alterations causing ARHR.
Project description:Recessive mutations in genes encoding mitochondrial DNA replication machinery lead to mitochondrial DNA depletion syndromes. This genetically and phenotypically heterogeneous group includes infantile onset spinocerebellar ataxia (OMIM# 271245) a neurodegenerative disease caused by mutations in the mtDNA helicase gene, c10orf2, with an increased frequency in the Finnish population due to a founder mutation. We describe a child of English descent who presented with a severe phenotype of IOSCA as a result of two-novel mutations in the c10orf2 gene. This paper expands the phenotypic spectrum of IOSCA and adds further evidence for the presence of a genotype-phenotype correlation among patients with recessive mutations in this gene.
Project description:The objective of this study is to resequence of targeted intervals containing autosomal recessive variants causing neurological disorders in consanguineous pedigrees. Using homozygosity mapping, three intervals of very different sizes have previously been unambiguously mapped for three different neurological diseases: 2.4Mb, 8Mb and 14.3Mb in size, for Microlissencephaly, Severe Mental Retardation and Complicated hereditary spastic paraplegia respectively. This study is a pilot to assess how well custom targeted resequencing performs across a broad size range of intervals. The study design is to use a different custom capture probe set for each interval, pulldown from a single patient from each family, and sequence 1 lane using Illumina paired-reads for each sample. Candidate variants will be followed up in the families themselves, and in patients with similar phenotypes from outbred populations.
Project description:Postaxial polydactyly (PAP) is a common limb malformation that often leads to cosmetic and functional complications. Molecular evaluation of polydactyly can serve as a tool to elucidate genetic and signaling pathways that regulate limb development, specifically, the anterior-posterior specification of the limb. To date, only five genes have been identified for nonsyndromic PAP: FAM92A, GLI1, GLI3, IQCE and ZNF141. In this study, two Pakistani multiplex consanguineous families with autosomal recessive nonsyndromic PAP were clinically and molecularly evaluated. From both pedigrees, a DNA sample from an affected member underwent exome sequencing. In each family, we identified a segregating frameshift (c.591dupA [p.(Q198Tfs*21)]) and nonsense variant (c.2173A?>?T [p.(K725*)]) in KIAA0825 (also known as C5orf36). Although KIAA0825 encodes a protein of unknown function, it has been demonstrated that its murine ortholog is expressed during limb development. Our data contribute to the establishment of a catalog of genes important in limb patterning, which can aid in diagnosis and obtaining a better understanding of the biology of polydactyly.