Unknown

Dataset Information

0

Pressure-Tuneable Visible-Range Band Gap in the Ionic Spinel Tin Nitride.


ABSTRACT: The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high-pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn3 N4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3?eV to 3.0?eV over a range of 100?GPa, a 540?nm blue-shift spanning the entire visible spectrum. The pressure-mediated band gap opening is general to this material across numerous high-density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure-tuneable electronic properties for future applications.

SUBMITTER: Kearney JSC 

PROVIDER: S-EPMC6221123 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications


The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high-pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn<sub>3</sub> N<sub>4</sub> under compression is now reported. A continuous opening of the optical band gap was obser  ...[more]

Similar Datasets

| S-EPMC7027884 | biostudies-literature
| S-EPMC6572751 | biostudies-literature
| S-EPMC5590426 | biostudies-literature
| S-EPMC8179323 | biostudies-literature
| S-EPMC7153252 | biostudies-literature
| S-EPMC6546742 | biostudies-literature
| S-EPMC8889581 | biostudies-literature
| S-EPMC10905991 | biostudies-literature
| S-EPMC9194474 | biostudies-literature
| S-EPMC7193582 | biostudies-literature