Unknown

Dataset Information

0

The Substituent Effect on the Radical Scavenging Activity of Apigenin.


ABSTRACT: Flavonoids widely found in natural foods are excellent free radical scavengers. The relationship between the substituent and antioxidative activity of flavonoids has not yet been completely elucidated. In this work, the antioxidative activity of apigenin derivatives with different substituents at the C3 position was determined by density functional theory (DFT) calculations. The bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA) were calculated. Donator acceptor map (DAM) analysis illustrated that the studied compounds are worse electron acceptors than F and also are not better electron donors than Na. The strongest antioxidative group of apigenin derivatives was the same as apigenin. Excellent correlations were found between the BDE/IP/PA and Hammett sigma constants. Therefore, Hammett sigma constants can be used to predict the antioxidative activity of substituted apigenin and to design new antioxidants based on flavonoids. In non-polar phases, the antioxidative activity of apigenin was increased by the electron-withdrawing groups, while it was reduced by the electron-donating groups. Contrary results occurred in the polar phase. The electronic effect of the substituents on BDE(4'-OH), BDE(5-OH), PA(4'-OH), and IP is mainly controlled by the resonance effect, while that on BDE(7-OH), PA(5-OH), and PA(7-OH) is governed by the field/inductive effect.

SUBMITTER: Zheng YZ 

PROVIDER: S-EPMC6222755 | biostudies-literature | 2018 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Substituent Effect on the Radical Scavenging Activity of Apigenin.

Zheng Yan-Zhen YZ   Chen Da-Fu DF   Deng Geng G   Guo Rui R  

Molecules (Basel, Switzerland) 20180810 8


Flavonoids widely found in natural foods are excellent free radical scavengers. The relationship between the substituent and antioxidative activity of flavonoids has not yet been completely elucidated. In this work, the antioxidative activity of apigenin derivatives with different substituents at the C3 position was determined by density functional theory (DFT) calculations. The bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA) were calculated. Donator accepto  ...[more]

Similar Datasets

| S-EPMC6943502 | biostudies-literature
| S-EPMC11206437 | biostudies-literature
| S-EPMC8158809 | biostudies-literature
| S-EPMC8316794 | biostudies-literature
| S-EPMC8745304 | biostudies-literature
| S-EPMC6152720 | biostudies-literature
| S-EPMC9076562 | biostudies-literature
| S-EPMC7181133 | biostudies-literature
| S-EPMC6057241 | biostudies-literature
| S-EPMC6933143 | biostudies-literature