Tuned polymerization of the transcription factor Yan limits off-DNA sequestration to confer context-specific repression.
Ontology highlight
ABSTRACT: During development, transcriptional complexes at enhancers regulate gene expression in complex spatiotemporal patterns. To achieve robust expression without spurious activation, the affinity and specificity of transcription factor-DNA interactions must be precisely balanced. Protein-protein interactions among transcription factors are also critical, yet how their affinities impact enhancer output is not understood. The Drosophila transcription factor Yan provides a well-suited model to address this, as its function depends on the coordinated activities of two independent and essential domains: the DNA-binding ETS domain and the self-associating SAM domain. To explore how protein-protein affinity influences Yan function, we engineered mutants that increase SAM affinity over four orders of magnitude. This produced a dramatic subcellular redistribution of Yan into punctate structures, reduced repressive output and compromised survival. Cell-type specification and genetic interaction defects suggest distinct requirements for polymerization in different regulatory decisions. We conclude that tuned protein-protein interactions enable the dynamic spectrum of complexes that are required for proper regulation.
SUBMITTER: Hope CM
PROVIDER: S-EPMC6226293 | biostudies-literature | 2018 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA