Unknown

Dataset Information

0

Detecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex genetics.


ABSTRACT: BACKGROUND:Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype-phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. RESULTS:Two of these rules-one associated with eating disorder and the other with anxiety-remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio?~?3.4 and 3.0, respectively) and support previously reported molecular biological findings. CONCLUSION:Our approach detected novel specific genotype-phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype-phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts.

SUBMITTER: Breuer R 

PROVIDER: S-EPMC6230336 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Detecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex genetics.

Breuer René R   Mattheisen Manuel M   Frank Josef J   Krumm Bertram B   Treutlein Jens J   Kassem Layla L   Strohmaier Jana J   Herms Stefan S   Mühleisen Thomas W TW   Degenhardt Franziska F   Cichon Sven S   Nöthen Markus M MM   Karypis George G   Kelsoe John J   Greenwood Tiffany T   Nievergelt Caroline C   Shilling Paul P   Shekhtman Tatyana T   Edenberg Howard H   Craig David D   Szelinger Szabolcs S   Nurnberger John J   Gershon Elliot E   Alliey-Rodriguez Ney N   Zandi Peter P   Goes Fernando F   Schork Nicholas N   Smith Erin E   Koller Daniel D   Zhang Peng P   Badner Judith J   Berrettini Wade W   Bloss Cinnamon C   Byerley William W   Coryell William W   Foroud Tatiana T   Guo Yirin Y   Hipolito Maria M   Keating Brendan B   Lawson William W   Liu Chunyu C   Mahon Pamela P   McInnis Melvin M   Murray Sarah S   Nwulia Evaristus E   Potash James J   Rice John J   Scheftner William W   Zöllner Sebastian S   McMahon Francis J FJ   Rietschel Marcella M   Schulze Thomas G TG  

International journal of bipolar disorders 20181111 1


<h4>Background</h4>Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size a  ...[more]

Similar Datasets

| S-EPMC5340324 | biostudies-literature
2021-04-23 | GSE173141 | GEO
| S-EPMC5509558 | biostudies-literature
2021-04-23 | GSE173140 | GEO
2021-04-23 | GSE173138 | GEO
2021-04-23 | GSE173137 | GEO
2021-04-23 | GSE173139 | GEO
| S-EPMC5858940 | biostudies-literature
| S-EPMC4561350 | biostudies-literature
| S-EPMC9834058 | biostudies-literature