Unknown

Dataset Information

0

Triple resonance EPR spectroscopy determines the Mn2+ coordination to ATP.


ABSTRACT: Mn2+ often serves as a paramagnetic substitute to Mg2+, providing means for exploring the close environment of Mg2+ in many biological systems where it serves as an essential co-factor. This applies to proteins with ATPase activity, where the ATP hydrolysis requires the binding of Mg2+-ATP to the ATPase active site. In this context, it is important to distinguish between the Mn2+ coordination mode with free ATP in solution as compared to the protein bound case. In this work, we explore the Mn2+ complexes with ATP, the non-hydrolysable ATP analog, AMPPNP, and ADP free in solution. Using W-band 31P electron-nuclear double resonance (ENDOR) we obtained information about the coordination to the phosphates, whereas from electron-electron double resonance (ELDOR) - detected NMR (EDNMR) we determined the coordination to an adenosine nitrogen. The coordination to these ligands has been reported earlier, but whether the nitrogen and phosphate coordination is within the same nucleotide molecules or different ones is still under debate. By applying the correlation technique, THYCOS (triple hyperfine correlation spectroscopy), and measuring 15N-31P correlations we establish that in Mn-ATP in solution both phosphates and a nitrogen are coordinated to the Mn2+ ion. We also carried out DFT calculations to substantiate this finding. In addition, we expanded the understanding of the THYCOS experiment by comparing it to 2D-EDNMR for 55Mn-31P correlation experiments and through simulations of THYCOS and 2D-EDNMR spectra with 15N-31P correlations.

SUBMITTER: Litvinov A 

PROVIDER: S-EPMC6230374 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Triple resonance EPR spectroscopy determines the Mn<sup>2+</sup> coordination to ATP.

Litvinov Aleksei A   Feintuch Akiva A   Un Sun S   Goldfarb Daniella D  

Journal of magnetic resonance (San Diego, Calif. : 1997) 20180724


Mn<sup>2+</sup> often serves as a paramagnetic substitute to Mg<sup>2+</sup>, providing means for exploring the close environment of Mg<sup>2+</sup> in many biological systems where it serves as an essential co-factor. This applies to proteins with ATPase activity, where the ATP hydrolysis requires the binding of Mg<sup>2+</sup>-ATP to the ATPase active site. In this context, it is important to distinguish between the Mn<sup>2+</sup> coordination mode with free ATP in solution as compared to the  ...[more]

Similar Datasets

| S-EPMC3878184 | biostudies-literature
| S-EPMC5278496 | biostudies-literature
| S-EPMC8179457 | biostudies-literature
| S-EPMC6955315 | biostudies-literature
| S-EPMC7611071 | biostudies-literature
| S-EPMC10652330 | biostudies-literature
| S-EPMC9720741 | biostudies-literature
| S-EPMC9251573 | biostudies-literature
| S-EPMC6973229 | biostudies-literature
| S-EPMC7255622 | biostudies-literature