Unknown

Dataset Information

0

Opposing effects of final population density and stress on Escherichia coli mutation rate.


ABSTRACT: Evolution depends on mutations. For an individual genotype, the rate at which mutations arise is known to increase with various stressors (stress-induced mutagenesis-SIM) and decrease at high final population density (density-associated mutation-rate plasticity-DAMP). We hypothesised that these two forms of mutation-rate plasticity would have opposing effects across a nutrient gradient. Here we test this hypothesis, culturing Escherichia coli in increasingly rich media. We distinguish an increase in mutation rate with added nutrients through SIM (dependent on error-prone polymerases Pol IV and Pol V) and an opposing effect of DAMP (dependent on MutT, which removes oxidised G nucleotides). The combination of DAMP and SIM results in a mutation rate minimum at intermediate nutrient levels (which can support 7 × 108 cells ml-1). These findings demonstrate a strikingly close and nuanced relationship of ecological factors-stress and population density-with mutation, the fuel of all evolution.

SUBMITTER: Krasovec R 

PROVIDER: S-EPMC6230470 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4989268 | biostudies-literature
| S-EPMC3771984 | biostudies-literature
| S-EPMC3684851 | biostudies-literature
| S-EPMC4133409 | biostudies-literature
| S-EPMC4007418 | biostudies-literature
| S-EPMC7407472 | biostudies-literature
| S-EPMC5289635 | biostudies-literature
| S-EPMC6116381 | biostudies-literature
| S-EPMC3246271 | biostudies-literature
| S-EPMC5727395 | biostudies-literature