Unknown

Dataset Information

0

Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review.


ABSTRACT: Recent years have witnessed the development of an enormous variety of hydrogel-based systems for neuroregeneration. Formed from hydrophilic polymers and comprised of up to 90% of water, these three-dimensional networks are promising tools for brain tissue regeneration. They can assist structural and functional restoration of damaged tissues by providing mechanical support and navigating cell fate. Hydrogels also show the potential for brain injury therapy due to their broadly tunable physical, chemical, and biological properties. Hydrogel polymers, which have been extensively implemented in recent brain injury repair studies, include hyaluronic acid, collagen type I, alginate, chitosan, methylcellulose, Matrigel, fibrin, gellan gum, self-assembling peptides and proteins, poly(ethylene glycol), methacrylates, and methacrylamides. When viewed as tools for neuroregeneration, hydrogels can be divided into: (1) hydrogels suitable for brain injury therapy, (2) hydrogels that do not meet basic therapeutic requirements and (3) promising hydrogels which meet the criteria for further investigations. Our analysis shows that fibrin, collagen I and self-assembling peptide-based hydrogels display very attractive properties for neuroregeneration.

SUBMITTER: Kornev VA 

PROVIDER: S-EPMC6232648 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review.

Kornev Vladimir A VA   Grebenik Ekaterina A EA   Solovieva Anna B AB   Dmitriev Ruslan I RI   Timashev Peter S PS  

Computational and structural biotechnology journal 20181102


Recent years have witnessed the development of an enormous variety of hydrogel-based systems for neuroregeneration. Formed from hydrophilic polymers and comprised of up to 90% of water, these three-dimensional networks are promising tools for brain tissue regeneration. They can assist structural and functional restoration of damaged tissues by providing mechanical support and navigating cell fate. Hydrogels also show the potential for brain injury therapy due to their broadly tunable physical, c  ...[more]

Similar Datasets

| S-EPMC9789697 | biostudies-literature
| S-EPMC7017112 | biostudies-literature
| S-EPMC5752677 | biostudies-literature
| S-EPMC8222076 | biostudies-literature
| S-EPMC7964116 | biostudies-literature
| S-EPMC7923954 | biostudies-literature
| S-EPMC8430935 | biostudies-literature
| S-EPMC8123829 | biostudies-literature
| S-EPMC2706831 | biostudies-literature
| S-EPMC5301156 | biostudies-literature