Project description:Here, we report the complete genome sequence of Ureaplasma diversum strain ATCC 49782. This species is of bovine origin, having an association with reproductive disorders in cattle, including placentitis, fetal alveolitis, abortion, and birth of weak calves. It has a small circular chromosome of 975,425 bp.
Project description:Bovine is considered the main reservoir of influenza D virus (IDV), however, low levels of seropositivity in other farmed species suggest a wide range of potential hosts. Nevertheless, it is not clear whether this scenario is the result of rare spillover events upon contact with bovines, or a lack of adaptation of IDV to these hosts. Among these species, sheep represents a crucial component of the rural economy in many developing countries, but little is known about its role in the ecology of the disease. To evaluate the susceptibility of sheep to IDV viruses of different origin, we used ovine respiratory tissues as an ex vivo model and investigated the infective phenotype of two IDV strains isolated from either bovine (IDV-BOV) or swine (IDV-SW). For translatability purposes, we included a parainfluenza type 3 virus, as positive control, given its known respiratory tropism in sheep. We performed a timed evaluation of the viral infectivity, cell tropism and the associated histopathology, by means of tissue culture infectious dose assays on supernatants and histological/immunohistochemical analyses on explanted tissues, respectively. To further investigate differences in the phenotype of these two strains and to identify the potential targets of replication in the most commonly land-based farmed mammalian species, we carried out virus binding assays on histological sections of the respiratory tract of bovine, caprine, ovine, horse and swine. Our results demonstrated that IDV successfully replicates in nasal, tracheal and lung ovine tissues, suggesting a moderate susceptibility of this species to IDV infection. Interestingly, despite the high genetic identity of these strains, IDV- BOV consistently replicated to higher titers than IDV-SW in all respiratory tracts, suggesting IDV viruses might display considerable levels of variability in their phenotype when crossing the species barrier. Virus binding assays confirmed a superior affinity of the IDV viruses for the bovine upper respiratory tract, and a preference for the pharyngeal epithelium of small ruminants, indicating possible targets to improve the sensitivity of virological sampling for diagnostic and post-mortem purposes. Further pathogenesis and cross-species transmission studies will be necessary to elucidate the ecology of IDV and eventually allow the design of cost-effective surveillance strategies.
Project description:BackgroundUreaplasma diversum has numerous virulence factors that contribute to pathogenesis in cattle, including Lipid-associated membrane proteins (LAMPs). Therefore, the objectives of this study were to evaluate in silico important characteristics for immunobiological applications and for heterologous expression of 36 LAMPs of U. diversum (UdLAMPs) and, also, to verify by conventional PCR the distribution of these antigens in strains of Brazilian states (Bahia, Minas Gerais, São Paulo, and Mato Grosso do Sul). The Manatee database was used to obtain the gene and peptide sequences of the antigens. Similarity and identity studies were performed using BLASTp and direct antigenicity was evaluated by the VaxiJen v2.0 server. Epitope prediction for B lymphocytes was performed on the BepiPred v2.0 and CBTOPE v1.0 servers. NetBoLApan v1.0 was used to predict CD8+ T lymphocyte epitopes. Subcellular location and presence of transmembrane regions were verified by the software PSORTb v3.0.2 and TMHMM v2.2 respectively. SignalP v5.0, SecretomeP v2.0, and DOLOP servers were used to predict the extracellular excretion signal. Physico-chemical properties were evaluated by the web-software ProtParam, Solpro, and Protein-sol.ResultsIn silico analysis revealed that many UdLAMPs have desirable properties for immunobiological applications and heterologous expression. The proteins gudiv_61, gudiv_103, gudiv_517, and gudiv_681 were most promising. Strains from the 4 states were PCR positive for antigens predicted with immunogenic and/or with good characteristics for expression in a heterologous system.ConclusionThese works contribute to a better understanding of the immunobiological properties of the UdLAMPs and provide a profile of the distribution of these antigens in different Brazilian states.
Project description:Determining the viral etiology of respiratory tract infections (RTI) has been limited for the most part to specific primer PCR-based methods due to their increased sensitivity and specificity compared to other methods, such as tissue culture. However, specific primer approaches have limited the ability to fully understand the diversity of infecting pathogens. A pathogen chip system (PathChip), developed at the Genome Institute of Singapore (GIS), using a random-tagged PCR coupled to a chip with over 170,000 probes, has the potential to recognize all known human viral pathogens. We tested 290 nasal wash specimens from Filipino children <2 years of age with respiratory tract infections using culture and 3 PCR methods-EraGen, Luminex, and the GIS PathChip. The PathChip had good diagnostic accuracy, ranging from 85.9% (95% confidence interval [CI], 81.3 to 89.7%) for rhinovirus/enteroviruses to 98.6% (95% CI, 96.5 to 99.6%) for PIV 2, compared to the other methods and additionally identified a number of viruses not detected by these methods.
Project description:IntroductionBovine parainfluenza virus-3 (BPIV3) and bovine respiratory syncytial virus (BRSV) are the cause of respiratory disease in cattle worldwide. With other pathogens, they cause bovine respiratory disease complex (BRDC) in ruminants. The aim of the study was the detection and molecular characterisation of BPIV3 and BRSV from nasal swabs and lung samples of cows in and around the Erzurum region of eastern Turkey.Material and methodsIn total, 155 samples were collected. Of animals used in the study 92 were males and 63 females. The age of the animals was between 9 months and 5 years, mean 1.4 years. Most males were in the fattening period and being raised in open sheds; females were in the lactating period and kept in free stall barns. All samples were tested for the presence of viral genes using RT-PCR. Gene-specific primers in a molecular method (RT-PCR) identified BRSV (fusion gene) and BPIV3 (matrix gene) strains at the genus level.ResultsRNA from BRSV and BPIV3 was detected in two (1.29%) and three (1.93%) samples, respectively, one of each of which was sequenced and the sequences were aligned with reference virus strains. Phylogenetic analyses clustered the strains in genotype C/BPIV3 and subgroup III/BRSV.ConclusionThe results indicate that BRSV and BPIV3 contribute to bovine respiratory disease cases in Turkey. This is the first report on their detection and molecular characterisation in ruminants in Turkey.