Unknown

Dataset Information

0

Bayesian spatiotemporal analysis of malaria infection along an international border: Hlaingbwe Township in Myanmar and Tha-Song-Yang District in Thailand.


ABSTRACT:

Background

One challenge in moving towards malaria elimination is cross-border malaria infection. The implemented measures to prevent and control malaria re-introduction across the demarcation line between two countries require intensive analyses and interpretation of data from both sides, particularly in border areas, to make correct and timely decisions. Reliable maps of projected malaria distribution can help to direct intervention strategies. In this study, a Bayesian spatiotemporal analytic model was proposed for analysing and generating aggregated malaria risk maps based on the exceedance probability of malaria infection in the township-district adjacent to the border between Myanmar and Thailand. Data of individual malaria cases in Hlaingbwe Township and Tha-Song-Yang District during 2016 were extracted from routine malaria surveillance databases. Bayesian zero-inflated Poisson model was developed to identify spatial and temporal distributions and associations between malaria infections and risk factors. Maps of the descriptive statistics and posterior distribution of predicted malaria infections were also developed.

Results

A similar seasonal pattern of malaria was observed in both Hlaingbwe Township and Tha-Song-Yang District during the rainy season. The analytic model indicated more cases of malaria among males and individuals aged???15 years. Mapping of aggregated risk revealed consistently high or low probabilities of malaria infection in certain village tracts or villages in interior parts of each country, with higher probability in village tracts/villages adjacent to the border in places where it could easily be crossed; some border locations with high mountains or dense forests appeared to have fewer malaria cases. The probability of becoming a hotspot cluster varied among village tracts/villages over the year, and some had close to no cases all year.

Conclusions

The analytic model developed in this study could be used for assessing the probability of hotspot cluster, which would be beneficial for setting priorities and timely preventive actions in such hotspot cluster areas. This approach might help to accelerate reaching the common goal of malaria elimination in the two countries.

SUBMITTER: Thway AM 

PROVIDER: S-EPMC6240260 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bayesian spatiotemporal analysis of malaria infection along an international border: Hlaingbwe Township in Myanmar and Tha-Song-Yang District in Thailand.

Thway Aung Minn AM   Rotejanaprasert Chawarat C   Sattabongkot Jetsumon J   Lawawirojwong Siam S   Thi Aung A   Hlaing Tin Maung TM   Soe Thiha Myint TM   Kaewkungwal Jaranit J  

Malaria journal 20181116 1


<h4>Background</h4>One challenge in moving towards malaria elimination is cross-border malaria infection. The implemented measures to prevent and control malaria re-introduction across the demarcation line between two countries require intensive analyses and interpretation of data from both sides, particularly in border areas, to make correct and timely decisions. Reliable maps of projected malaria distribution can help to direct intervention strategies. In this study, a Bayesian spatiotemporal  ...[more]

Similar Datasets

| S-EPMC5374572 | biostudies-literature
| S-EPMC7659163 | biostudies-literature
| S-EPMC5853934 | biostudies-literature
| S-EPMC8744095 | biostudies-literature
| S-EPMC8341710 | biostudies-literature
| S-EPMC5508912 | biostudies-literature
| S-EPMC4384802 | biostudies-literature
| S-EPMC4593425 | biostudies-literature
| S-EPMC5686509 | biostudies-literature
| S-EPMC5829521 | biostudies-literature