Curative Anti-Inflammatory Properties of Chinese Optimized Yinxieling Formula in Models of Parkinson's Disease.
Ontology highlight
ABSTRACT: Parkinson's disease (PD) is marked by the progressive degeneration of dopaminergic neurons (DAN) accompanied by glial activation. Thus, inhibiting glial activation that occurs during this disease could be an effective method for treating PD. Optimized Yinxieling Formula (OYF), a Chinese medicinal formula, which is used to efficiently treat autoimmune disease psoriasis, has been proved to display potential immunomodulatory effects in inflammation-associated diseases. This study assessed the therapeutic benefits of OYF on glial-mediated neuroinflammation and neuroprotection in PD models in vitro and in vivo. First, the results showed that OYF significantly suppresses LPS-induced proinflammatory cytokine secretion and attenuates the overall inflammatory responses in BV-2 cells. Second, in vivo studies confirm that while the validity of our MPTP-induced PD mouse models possesses activated glia and significant neurobehavioral dysfunction, pretreatment with OYF prevents glial activation and ameliorates movement dysfunction in the MPTP-induced PD mouse models as evaluated by the pole and rotarod tests. Third, transcriptomic analyses were carried out to reveal the underlying molecular mechanism of the OYF treatment. Sixteen pathways were significantly upregulated in the OYF-treated PD model mice, including the cytokine-cytokine receptor interaction, cell adhesion molecules, coagulation, and complement cascades. Fifteen pathways were significantly downregulated in the OYF-treated PD model mice, such as the natural killer cell mediated cytotoxicity, hematopoietic cell lineage, phagosome, and others. These pathways share direct or indirect features of immunomodulation, suggesting that the physiological effects of OYF involve key roles of immune and inflammation regulations. Therefore, we prove that OYF is a useful immunomodulatory formula in developing prevention and treatment methods for neurodegenerative disease PD.
SUBMITTER: Wei R
PROVIDER: S-EPMC6241364 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
ACCESS DATA