Unknown

Dataset Information

0

Tendon Fascicle-Inspired Nanofibrous Scaffold of Polylactic acid/Collagen with Enhanced 3D-Structure and Biomechanical Properties.


ABSTRACT: Surgical treatment of tendon lesions still yields unsatisfactory clinical outcomes. The use of bioresorbable scaffolds represents a way forward to improve tissue repair. Scaffolds for tendon reconstruction should have a structure mimicking that of the natural tendon, while providing adequate mechanical strength and stiffness. In this paper, electrospun nanofibers of two crosslinked PLLA/Collagen blends (PLLA/Coll-75/25, PLLA/Coll-50/50) were developed and then wrapped in bundles, where the nanofibers are predominantly aligned along the bundles. Bundle morphology was assessed via SEM and high-resolution x-ray computed tomography (XCT). The 0.4-micron resolution in XCT demonstrated a biomimetic morphology of the bundles for all compositions, with a predominant nanofiber alignment and some scatter (50-60% were within 12° from the axis of the bundle), similar to the tendon microstructure. Human fibroblasts seeded on the bundles had increased metabolic activity from day 7 to day 21 of culture. The stiffness, strength and toughness of the bundles are comparable to tendon fascicles, both in the as-spun condition and after crosslinking, with moderate loss of mechanical properties after ageing in PBS (7 and 14 days). PLLA/Coll-75/25 has more desirable mechanical properties such as stiffness and ductility, compared to the PLLA/Coll-50/50. This study confirms the potential to bioengineer tendon fascicles with enhanced 3D structure and biomechanical properties.

SUBMITTER: Sensini A 

PROVIDER: S-EPMC6249227 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tendon Fascicle-Inspired Nanofibrous Scaffold of Polylactic acid/Collagen with Enhanced 3D-Structure and Biomechanical Properties.

Sensini Alberto A   Gualandi Chiara C   Zucchelli Andrea A   Boyle Liam A LA   Kao Alexander P AP   Reilly Gwendolen C GC   Tozzi Gianluca G   Cristofolini Luca L   Focarete Maria Letizia ML  

Scientific reports 20181121 1


Surgical treatment of tendon lesions still yields unsatisfactory clinical outcomes. The use of bioresorbable scaffolds represents a way forward to improve tissue repair. Scaffolds for tendon reconstruction should have a structure mimicking that of the natural tendon, while providing adequate mechanical strength and stiffness. In this paper, electrospun nanofibers of two crosslinked PLLA/Collagen blends (PLLA/Coll-75/25, PLLA/Coll-50/50) were developed and then wrapped in bundles, where the nanof  ...[more]

Similar Datasets

| S-EPMC8400217 | biostudies-literature
| S-EPMC7301599 | biostudies-literature
| S-EPMC7105874 | biostudies-literature
| S-EPMC7701916 | biostudies-literature
| S-EPMC3655185 | biostudies-literature
| S-EPMC9493000 | biostudies-literature
| S-EPMC6223802 | biostudies-other
| S-EPMC9802318 | biostudies-literature
| S-EPMC3288374 | biostudies-literature
| S-EPMC5074245 | biostudies-literature